Skip to main content

Balances in the Atmosphere and Ocean: Implications for Forecasting and Reliability

  • Chapter
  • First Online:
  • 284 Accesses

Abstract

Scale interactions between a variety of motions in the atmosphere and ocean have many theoretical and practical implications from predictability at the weather scales to reliability at the slow seasonal and climate scales. Two classes of wavy motions are prominent at the hydrostatic limit, for instance: the fast inertia-gravity waves and the slow Rossby waves. Although only Rossby waves are believed to be of direct meteorological significance, neglecting the fast oscillations may corrupt numerical integrations leading to unrealistic results and eventually to a complete model crash. Reliability of long seasonal and climate scales depends upon a proper representation of, at least, the statistics of the weather scale phenomena under given boundary conditions. The predictability of the weather scale phenomena, on the other hand, depends on the proper evolution of the system from a given initial condition. It has long been shown that a balance between stringent and permissive control of the high-frequency oscillations can allow improvements to weather forecasting. Behind these concepts are the ways by which Rossby waves can interact, horizontally and vertically, with high-frequency oscillations, or with other slow frequency oscillations and even with topography. Thus, in the present work we make a review of Rossby wave theory, considering its generation mechanisms and their interactions, including a brief discussion of some applications for the atmosphere.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ambrizzi, T., Hoskins, B.J., Hsu, H.H.: Rossby wave propagation and teleconnection patterns in the austral winter. J. Atmos. Sci. 52(21), 3661–3672 (1995)

    Article  Google Scholar 

  2. Carvalho, L.M.V., Jones, C., Liebmann, B.: The south Atlantic convergence zone: intensity, form, persistence, and relationships with intraseasonal to interannual activity and extreme rainfall. J. Clim. 17(1), 88–108 (2004) https://doi.org/10.1175/1520-0442(2004)017<0088:TSACZI>2.0.CO;2

    Article  Google Scholar 

  3. Cassou, C.: Intraseasonal interaction between the Madden–Julian oscillation and the north Atlantic oscillation. Nature 455,523–527 (2008). https://doi.org/10.1038/nature07286

    Article  Google Scholar 

  4. Charney, J., Devore, J.: Multiple flow equilibria in the atmosphere and blocking. J. Atmos. Sci. 36, 1205–1216 (1979)

    Article  Google Scholar 

  5. Charney, J., Strauss, D.M.: Form drag instability, multiple equilibria and propagating planetary waves in baroclinic, orographically forced, planetary wave systems. J. Atmos. Sci. 37, 1157–1176 (1980)

    Article  Google Scholar 

  6. Coelho, C.A.S., Oliveira, C.P.O., Ambrizzi, T., Reboita, M.S., Carpenedo, C.B., Campos, J.L.P., Tomaziello, A.C.N., Pampuch, L.A., Custódio, M.S., Dutra, L.M.M., Da Rocha, R.P., Rehbein, A.: The 2014 southeast brazil austral summer drought: regional scale mechanisms and teleconnections. Clim. Dyn. 46(11–12), 3737–3752 (2016). https://doi.org/10.1007/s00382-015-2800-1

    Article  Google Scholar 

  7. Dias, P.L.D.S., Bonatti, J.P.: A preliminary study of the observed vertical mode structure of the summer circulation over tropical South America. Tellus Ser. A Dyn. Meteorol. Oceanogr. 37(2), 185–195 (1985). https://doi.org/10.3402/tellusa.v37i2.11665

    Article  Google Scholar 

  8. Dole, R., Hoerling, M., Kumar, A., Eischeid, J., Perlwitz, J., Quan, X.W., Kiladis, G., Webb, R., Murray, D., Chen, M., Wolter, K., Zhang, T.: The making of an extreme event: Putting the pieces together. Bull. Am. Meteorol. Soc. 95(3), 427–440 (2014). https://doi.org/10.1175/BAMS-D-12-00069.1

    Article  Google Scholar 

  9. Garfinkel, C., Benedict, J., Maloney, E.: Impact of the MJO on the boreal winter extratropical circulation. Geophys. Res. Lett. 41(16), 6055–6062 (2014). https://doi.org/10.1002/2014GL061094

    Article  Google Scholar 

  10. Gill, A.: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980)

    Article  Google Scholar 

  11. Gloeckler, L., Roundy, P.E.: Modulation of the extratropical circulation by combined activity of the Madden–Julian oscillation and equatorial Rossby wave during boreal winter. Mon. Weather Rev. 141(4), 1347–1357 (2013)

    Article  Google Scholar 

  12. Gurarie, D.: Long-range dynamics of a shallow water triad: renormalization, modulation, and cyclogenesis. J. Atmos. Sci. 60(5), 693–710 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hart, J.: Barotropic quasi-geostrophic flow over anisotropic mountains. J. Atmos. Sci. 36, 1736–1746 (1979)

    Article  Google Scholar 

  14. Higgins, R., Mo, K.: Persistent north pacific circulation anomalies and the tropical intraseasonal oscillation. J. Clim. 10(2), 223–244 (1997)

    Article  Google Scholar 

  15. Horel, J.D., Wallace, J.M.: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Weather Rev. 109(4), 813–829 (1981)

    Article  Google Scholar 

  16. Hoskins, B., Jin, F.F.: The initial value problem for tropical perturbations to a baroclinic atmosphere. Q. J. R. Meteorol. Soc. 117, 299–317 (1991)

    Article  Google Scholar 

  17. Hoskins, B.J., Karoly, D.J.: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38(6), 1179–1196 (1981)

    Article  Google Scholar 

  18. Hoskins, B., Sardeshmukh, P.: A diagnostic study of the dynamics of the northern hemisphere winter of 1985–1986. Q. J. R. Meteorol. Soc. 113, 759–778 (1987)

    Article  Google Scholar 

  19. Karoly, D.J.: Southern hemisphere circulation features associated with El Niño-southern oscillation events. J. Clim. 2, 1239–1252 (1989)

    Article  Google Scholar 

  20. Kasahara, A., Silva Dias, P.: Response of equatorial planetary waves to stationary tropical heating in the global atmosphere with meridional and vertical shear. J. Atmos. Sci. 43, 1893–1911 (1986)

    Article  Google Scholar 

  21. Kevorkian, J., Cole, J.: Multiple Scale and Singular Perturbation Methods. Springer, New York (1986)

    MATH  Google Scholar 

  22. Lau, K., Lau, N.C.: The energetics and propagation dynamics of tropical summertime synoptic scale disturbances. Mon. Weather Rev. 120, 2523–2539 (1992)

    Article  Google Scholar 

  23. Lin, H., Brunet, G., Derome, J.: An observed connection between the north Atlantic oscillation and the Madden–Julian oscillation. J. Clim. (2009). https://doi.org/10.1175/2008JCLI2515.1

  24. Lynch, P.: The Emergence of Numerical Weather Prediction Richardson’s Dream. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  25. Majda, A.: Introduction to PDEs and Waves for the Atmosphere and Ocean, vol. 9. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  26. Majda, A.J., Biello, J.: The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci. 60, 1809–1821 (2003)

    Article  MathSciNet  Google Scholar 

  27. Majda, A.J., Klein, R.: Systematic multiscale models for the tropics. J. Atmos. Sci. 60(15), 393–408 (2003)

    Article  Google Scholar 

  28. Matsuno, T.: Quasi-geostrophic motions in the equatorial area. J. Meteorol. Soc. Jpn. 44, 25–42 (1966)

    Article  Google Scholar 

  29. Matthews, A.J., Hoskins, B.J., Masutani, M.: The global response to tropical heating in the Madden-Julian oscillation during the northern winter. Q. J. R. Meteorol. Soc. 130, 1991–2011 (2004)

    Article  Google Scholar 

  30. McPhaden, M.: Genesis and evolution of the 1997–98 El Niño. Science 12, 950–954 (1999)

    Article  Google Scholar 

  31. Parsons, D., Yoneyama, K., J.L., R.: The evolution of the tropical western Pacific atmosphere-ocean system following the arrival of a dry intrusion. Q. J. R. Meteorol. Soc. 126(563), 517–548 (2000)

    Google Scholar 

  32. Pedlosky, J.: Resonant topographic waves in barotropic and baroclinic flows. J. Atmos. Sci. 38(12), 2626–2641 (1981)

    Article  MathSciNet  Google Scholar 

  33. Pedlosky, J.: Geophysical Fluid Dynamics. Springer, New York (1987)

    Book  Google Scholar 

  34. Ramirez, E., Silva Dias, P.L., Raupp, C.: Asymptotic approach for the nonlinear equatorial long wave interactions. In: Journal of Physics: Conference Series, vol. 285, p. 012020. IOP Publishing, Bristol (2011)

    Google Scholar 

  35. Ramírez Gutiérrez, E., da Silva Dias, P.L., Raupp, C., Bonatti, J.P.: The family of anisotropically scaled equatorial waves. J. Adv. Model. Earth Syst. 3(4), M12002 (2011)

    Article  Google Scholar 

  36. Ramirez, E., da Silva Dias, P.L., Raupp, C.F.M.: Multiscale atmosphere–ocean interactions and the low-frequency variability in the equatorial region. J. Atmo. Sci. 74(8), 2503–2523 (2017). https://doi.org/10.1175/JAS-D-15-0325.1

    Article  Google Scholar 

  37. Raupp, C.F.: Interação não-linear entre ondas atmosféricas:um possível mecanismo para a conexão trópicos-extratrópicos em baixa-frequência. Tese (Doutorado em Meteorologia), Universidade de São Paulo – Instituto de Astronomia, Geofísica e Ciências Atmosféricas, São Paulo (2006)

    Google Scholar 

  38. Raupp, C.F.M., Silva Dias, P.L.: Dynamics of resonantly interacting equatorial waves. Tellus Ser. A Dyn. Meteorol. Oceanogr. 58, 263–279 (2006). https://doi.org/10.1111/j.1600-0870.2006.00151.x

    Article  Google Scholar 

  39. Ripa, P.: Weak interactions of equatorial waves in a one-layer model. Part I: general properties. J. Phys. Oceanogr. 13, 1208–1226 (1983)

    Google Scholar 

  40. Ripa, P.: Weak interactions of equatorial waves in a one-layer model. Part II: applications. J. Phys. Oceanogr. 13, 1227–1240 (1983)

    Google Scholar 

  41. Rodrigues, R.R., Woollings, T.: Impact of atmospheric blocking on South America in austral summer. J. Clim. 30(5), 1821–1837 (2017). https://doi.org/10.1175/JCLI-D-16-0493.1

    Article  Google Scholar 

  42. Rossby, C.G.: Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi-permanent centers of action. J. Mar. Res. 2, 38–55 (1939)

    Article  Google Scholar 

  43. Rossby, C.G.: On the propagation of frequencies and energy in certain types of oceanic and atmospheric waves. J. Meteorol. 2(4), 187–204 (1945)

    Article  MathSciNet  Google Scholar 

  44. Salby, M.L., Garcia, R.R.: Transient response to localized episodic heating in the tropics. Part I: excitation and short-time near-field behavior. J. Atmos. Sci. 44(2), 458–498 (1987). https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2

    Google Scholar 

  45. Webster, P.: Response of tropical atmosphere to local steady forcing. Mon. Weather Rev. 100, 518–540 (1972)

    Article  Google Scholar 

  46. Webster, P.: Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci. 38, 554–571 (1981)

    Article  Google Scholar 

  47. Webster, P.: Seasonality in the local and remote atmospheric response to the sea surface temperature anomalies. J. Atmos. Sci. 39, 41–52 (1982)

    Article  Google Scholar 

  48. Zhang, C.: Madden-Julian oscillation. Rev. Geophys. 43 (2005). https://doi.org/10.1029/2004RG000158

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enver Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ramírez, E., Siqueira, L., Camayo, R. (2019). Balances in the Atmosphere and Ocean: Implications for Forecasting and Reliability. In: Bacelar Lima Santos, L., Galante Negri, R., de Carvalho, T. (eds) Towards Mathematics, Computers and Environment: A Disasters Perspective. Springer, Cham. https://doi.org/10.1007/978-3-030-21205-6_3

Download citation

Publish with us

Policies and ethics