Skip to main content

An Overview of the El Niño, La Niña, and the Southern Oscillation Phenomena: Theory, Observations, and Modeling Links

  • Chapter
  • First Online:
Towards Mathematics, Computers and Environment: A Disasters Perspective

Abstract

As an important subject of study, the climate science encompasses all processes and phenomena in the atmosphere, ocean, ice, and land, displaying variability over a broad, although well defined, spectrum of spatial and temporal scales. The disparity of spatial and temporal scales of climate processes poses a major challenge in climate modeling, ranging from regional to planetary scales and from intraseasonal to climate changes over centuries. Moreover, despite the number of efforts to elucidate prominent phenomena, certain key features remain elusive, and so preclude actions toward anticipation and mitigation of hazardous impacts, with implications over diverse human activities. One interesting example is the El Niño, La Niña—Southern Oscillation (ENSO), which implies in a prominent large-scale coupled ocean–atmosphere oscillation across the equatorial Pacific. ENSO represents the dominant variability in the climate system on interannual to decadal timescales. The long-time behavior of the ENSO dynamics, though, is typically a complex interplay between periodicity and randomness. The classic approaches cannot precisely characterize the observed variability, which typically displays structured but aperiodic oscillations. The irregularity makes difficult to predict when the next extreme phase of ENSO is going to be manifested and the peak magnitude of the event has also been a difficult parameter to predict. Although the theory for ENSO has been widely explored along the past 40 years by observational and theoretical work involving different views, there is still lack of consensus between modelers and observers about what are the essential mechanisms for ENSO. Recent studies suggest that there exists El Niño (La Niña) diversity regarding the parameters related to its amplitude, trigger mechanisms, spatial patterns, and life cycle as well as its impacts on the globe. Thus, the objective of the present work is to discuss the development of the ideas toward what is known about ENSO today. Here, a review on theoretical fundamentals is presented from ENSO model hierarchy, basic mechanisms, ENSO irregularity, and interactions with other scales of variability along with a brief discussion of some recent observational results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, D.L.T., McCreary, J.P.: Slowly propagating disturbances in a coupled ocean-atmosphere model. J. Atmos. Sci. 42(6), 615–629 (1985)

    Article  Google Scholar 

  2. Battisti, D.: Dynamics and thermodynamics of a warming event in a coupled tropical atmosphere-ocean model. J. Atmos. Sci. 45(20), 2889–2919 (1988)

    Article  Google Scholar 

  3. Battisti, D., Hirst, A.: Interannual variability in a tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlinearity. J. Atmos. Sci. 46(12), 1687–1712 (1989)

    Article  Google Scholar 

  4. Camayo, R., Campos, E.: Application of wavelet transform in the study of coastal trapped waves off the west coast of South America. Geophys. Res. Lett. 33, L22,601 (2006). https://doi.org/10.1029/2006GL026395

    Article  Google Scholar 

  5. Cane, M.A., Zebiak, S.E.: A theory for El Niño and the Southern Oscillation. Science 228(4703), 1085–1087 (1985)

    Article  Google Scholar 

  6. Cane, M.A., Munnich, M., Zebiak, S.E.: A study of self-excited oscillations of the tropical ocean-atmosphere system. Part I: linear analysis. J. Atmos. Sci. 47, 1562–1577 (1990)

    Google Scholar 

  7. Capotondi, A., Wittenberg, A.T., Newman, M., Lorenzo, E.D., Yu, J.Y., Braconnot, P., Cole, J., Dewitte, B., Giese, B., Guilyardi, E., Jin, F.F., Karnauskas, K., Kirtman, B., Lee, T., Schneider, N., Xue, Y., Yeh, S.W.: Understanding ENSO diversity. Bull. Am. Meteorol. Soc. 96(6), 921–938 (2015). https://doi.org/10.1175/BAMS-D-13-00117.1

    Article  Google Scholar 

  8. Eisenman, I., Yu, L., Tziperman, E.: Westerly wind bursts: ENSO’s tail rather than the dog. J. Climate 18, 5224–5238 (2005)

    Article  Google Scholar 

  9. Garcia, R.R., Salby, M.L.: Transient response to localized episodic heating in the tropics. Part II: far-field behavior. J. Atmos. Sci. 44, 499–532 (1987). https://doi.org/10.1175/1520-0469(1987)044<0499:TRTLEH>2.0.CO;2

    Google Scholar 

  10. Gebbie, G., Eisenman, I., Wittenberg, A., Tziperman, E.: Modulation of westerly wind bursts by sea surface temperature: a semistochastic feedback for ENSO. J. Atmos. Sci. 64, 3281–3295 (2007)

    Article  Google Scholar 

  11. Gill, A.: Some simple solutions for heat-induced tropical circulation. Q. J. R. Meteorol. Soc. 106, 447–462 (1980)

    Article  Google Scholar 

  12. Harrrison, D., Vecchi, G.: Westerly wind events in the tropical Pacific 1986–1995. J. Climate 10, 3131–3156 (1997)

    Article  Google Scholar 

  13. Hirst, A., Lau, K.M.: Intraseasonal and interannual oscillations in coupled ocean-atmosphere models. J. Climate 3, 713–725 (1990)

    Article  Google Scholar 

  14. Horel, J., Wallace, J.: Planetary-scale atmospheric phenomena associated with the southern oscillation. Mon. Weather Rev. 109, 813–829 (1981)

    Article  Google Scholar 

  15. Hoskins, B.J., Karoly, D.J.: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci. 38, 1179–1196 (1981)

    Article  Google Scholar 

  16. Jin, F.F.: An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci. 54(7), 811–829 (1997)

    Google Scholar 

  17. Jin, F.F.: An equatorial ocean recharge paradigm for ENSO. Part II: a stripped-down coupled model. J. Atmos. Sci. 54(7), 830–847 (1997)

    Google Scholar 

  18. Jin, F., Neelin, J.: Modes of interannual tropical ocean–atmosphere interaction – a unified view. Part I: numerical results. J. Atmos. Sci. 50, 3477–3503 (1993)

    MathSciNet  Google Scholar 

  19. Karoly, D.J.: Southern Hemisphere circulation features associated with El Niño–Southern Oscillation. J. Climate 2, 1239–1252 (1989)

    Article  Google Scholar 

  20. Kirtman, B.P.: Oceanic Rossby wave dynamics and the ENSO period in a coupled model. J. Climate 10, 381–400 (1997)

    Article  Google Scholar 

  21. Kleeman, R.: Stochastic theories for the irregularity of ENSO. Philos. Transact. A Math. Phys. Eng. Sci. 366, 2511–26 (2008). https://doi.org/10.1098/rsta.2008.0048

    Article  MathSciNet  Google Scholar 

  22. Kleeman, R., Moore, A.M.: A theory for the limitation of ENSO predictability due to stochastic atmospheric transients. J. Atmos. Sci. 54, 753–767 (1997). https://doi.org/10.1175/1520-0469(1997)054!0753:ATFTLOO2.0.CO;2

    Article  Google Scholar 

  23. Kumar, A., Chen, M.: What is the variability in US west coast winter precipitation during strong El Niño events? Clim. Dyn. 48(7–8), 2789–2802 (2017)

    Article  Google Scholar 

  24. Madden, R., Julian, P.: Description of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 28, 702–708 (1971)

    Article  Google Scholar 

  25. Madden, R., Julian, P.: Description of global-scale circulation cells in the tropics with a 40–50 day period. J. Atmos. Sci. 29, 1109–1123 (1972)

    Article  Google Scholar 

  26. McPhaden, M.J., Zhang, D.: Pacific ocean circulation rebounds. Geophys. Res. Lett. 31, L18,301 (2004). https://doi.org/10.1029/2004GL020727.

    Article  Google Scholar 

  27. Moore, A.M., Kleeman, R.: Stochastic forcing of ENSO by the Intraseasonal Oscillation. J. Climate 12, 1199–1220 (1999). https://doi.org/10.1175/1520-0442(1999)012!1199:SFOEBTO2.0.CO;2

    Article  Google Scholar 

  28. Neelin, J.D., Jin, F.F.: Modes of interannual tropical ocean-atmosphere interaction – a unified view. Part II: analytical results in the weak-coupling limit. J. Atmos. Sci. 50(21), 3504–3522 (1993)

    MathSciNet  Google Scholar 

  29. Neelin, J.D., Latif, M., Jin, F.F.: Dynamics of coupled ocean-atmosphere models: the tropical problem. Annu. Rev. Fluid Mech. 26(1), 617–659 (1994)

    Article  Google Scholar 

  30. Penland, C., Sardeshmukh, P.D.: The optimal growth of tropical sea surface temperature anomalies. J. Climate 8, 1999–2024 (1995)

    Article  Google Scholar 

  31. Philander, S.G.: El Niño, La Niña and the Southern Oscillation, International Geophysical Series. Academic Press, Cambridge (1999)

    Google Scholar 

  32. Pope, J.O., Holland, P.R., Orr, A., Marshall, G.J., Phillips, T.: The impacts of El Niño on the observed sea ice budget of West Antarctica. Geophys. Res. Lett. 44, 6200–6208 (2017)

    Article  Google Scholar 

  33. Ramírez, E., Silva Dias, P.L., Veiga, J.A., Camayo, R., Santos, A.: Multivariate analysis of the energy cycle of the South American rainy season. Int. J. Climatol. 29, 2256–2269 (2009). https://doi.org/10.1002/joc.1858

    Article  Google Scholar 

  34. Ramírez, E., Silva Dias, P.L., Raupp, C., Bonatti, J.P.: The family of anisotropically scaled equatorial waves. J. Adv. Model. Earth Syst. 3, M12,002 (2011)

    Google Scholar 

  35. Ramirez, E., da Silva Dias, P.L., Raupp, C.F.: Multiscale atmosphere–ocean interactions and the low-frequency variability in the equatorial region. J. Atmos. Sci. 74, 2503–2523 (2017). https://doi.org/10.1175/JAS-D-15-0325.1

    Article  Google Scholar 

  36. Salby, M.L., Garcia, R.R.: Transient response to localized episodic heating in the tropics. Part I: excitation and short-time near-field behavior. J. Atmos. Sci. 44(2), 458–498 (1987). https://doi.org/10.1175/1520-0469(1987)044<0458:TRTLEH>2.0.CO;2

    Google Scholar 

  37. Sanabria, J., Bourrel, L., Dewitte, B., Frappart, F., Rau, P., Solis, O., Labat, D.: Rainfall along the coast of Peru during strong El Niño events. Int. J. Climatol. 38, 1737–1747 (2018)

    Article  Google Scholar 

  38. Schneider, E.K., Huang, B., Shukla, J.: Ocean wave dynamics and El Niño. J. Climate 8(10), 2415–2439 (1995)

    Article  Google Scholar 

  39. Schubert, W., Silvers, L., Masarik, M., Gonzalez, A.: A filtered model of tropical wave motions. J. Adv. Model. Earth Syst. 1(3), 1–11 (2009)

    Google Scholar 

  40. Siqueira, L., Kirtman, B.: Nonlinear dynamics approach to the predictability of the Cane-Zebiak coupled ocean-atmosphere model. Nonlin. Processes Geophys. 21, 155–163 (2014)

    Article  Google Scholar 

  41. Stefanova, L., Krishnamurti, T.: Kinetic energy exchange between the time scales of ENSO and the Pacific Decadal Oscillation. Meteorol. Atmos. Phys. 114(95) (2011). https://doi.org/10.107/s00703-011-0162-8

  42. Suarez, M., Schopf, P.: A delayed action oscillator for ENSO. J. Atmos. Sci. 45, 3283–3287 (1988)

    Article  Google Scholar 

  43. Takahashi, K., Martínez, A.G.: The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim. Dyn., 1–27 (2017). http://dx.doi.org/10.1007/s00382-017-3702-1

  44. Taschetto, A.S., Rodrigues, R.R., Meehl, G.A., McGregor, S., England, M.H.: How sensitive are the Pacific–tropical North Atlantic teleconnections to the position and intensity of El Niño-related warming? Clim. Dyn. 46(1841) (2016)

    Google Scholar 

  45. Tedeschi, R.G., Cavalcanti, I.F.A., Grimm, A.M.: Influences of two types of ENSO on South American precipitation. Int. J. Climatol. 33(6), 1382–1400 (2013). http://dx.doi.org/10.1002/joc.3519

    Article  Google Scholar 

  46. Thomson, D.: Jackknifing multitaper spectrum estimates. IEEE Signal Process. Mag. 24, 20–30 (2007). http://dx.doi.org/10.1109/MSP.2007.4286561

    Article  Google Scholar 

  47. Trenberth, K.E.: The definition of El Niño. Bull. Am. Meteorol. Soc. 78(12), 2771–2777 (1997). http://dx.doi.org/10.1175/1520-0477(1997)078<2771:TDOENO>2.0.CO;2

    Article  Google Scholar 

  48. Trenberth, K.E., Branstator, G.W., Karoly, D., Kumar, A., Ropelewski, N.L.C.: Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res. 103(C7), 14,291–14,324 (1998)

    Article  Google Scholar 

  49. Wang, B., An, S.I.: Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett. 28(19), 3709–3712 (2001)

    Article  Google Scholar 

  50. Wang, C., Wang, W., Wang, D., Wang, Q.: Interannual variability of the South China Sea associated with El Niño. J. Geophys. Res. 111(C03023) (2006)

    Google Scholar 

  51. Webster, P.J., Magaña, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari, T.: Monsoons: processes, predictability, and the prospects for prediction. J. Geophys. Res. 103(C7), 14,451–14,510 (1998)

    Article  Google Scholar 

  52. Wyrtki, K.: El Niño – the dynamic response of the equatorial pacific ocean to atmospheric forcing. J. Phys. Oceanogr. 5, 572–584 (1975). http://dx.doi.org/10.1175/1520-0485(1975)005<0572:ENTDRO>2.0.CO;2

    Article  Google Scholar 

  53. Zebiak, S., Cane, M.: A model El Niño southern oscillation. Mon. Weather Rev. 115, 2262–2278 (1987)

    Article  Google Scholar 

  54. Zhang, C.: Madden-Julian oscillation. Rev. Geophys. 43, RG2003 (2005). http://dx.doi.org/10.1029/2004RG000158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enver Ramírez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Siqueira, L., Ramírez, E., Camayo, R. (2019). An Overview of the El Niño, La Niña, and the Southern Oscillation Phenomena: Theory, Observations, and Modeling Links. In: Bacelar Lima Santos, L., Galante Negri, R., de Carvalho, T. (eds) Towards Mathematics, Computers and Environment: A Disasters Perspective. Springer, Cham. https://doi.org/10.1007/978-3-030-21205-6_1

Download citation

Publish with us

Policies and ethics