Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 244 Accesses

Abstract

Photoassociation is an important tool in the field of ultracold AMO physics [38]. It extends the fantastic progress of precision spectroscopy in ultracold atoms into the molecular domain. The technique allows precise measurements of molecular potentials useful for characterising atomic interactions and for studies of quantum chemistry [46]. Photoassociation performed in a lattice allows precision spectroscopy of molecular transitions in a Doppler- and recoil-free environment similar to atomic clocks [10, 57]. These molecular clocks are a useful tool for the study of fundamental physics due to their sensitivity to the variation of fundamental constants such as the fine structure constant \(\alpha \) and the proton-electron mass ratio [17, 69, 89].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abraham ERI, McAlexander WI, Gerton JM, Hulet RG, Côté R, Dalgarno A (1996) Singlet \(s\)-wave scattering lengths of \(^{6}\rm Li\) and \(^{7}\rm Li\rm \). Phys Rev A 53:R3713–R3715. https://doi.org/10.1103/PhysRevA.53.R3713

    Article  ADS  Google Scholar 

  2. Aikawa K, Akamatsu D, Hayashi M, Oasa K, Kobayashi J, Naidon P, Kishimoto T, Ueda M, Inouye S (2010) Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys Rev Lett 105(20):203,001. https://doi.org/10.1103/PhysRevLett.105.203001

  3. Altaf A, Dutta S, Lorenz J, Pérez-Ríos J, Chen YP, Elliott DS (2015) Formation of ultracold \(^{7}\)Li \(^{85}\)Rb molecules in the lowest triplet electronic state by photoassociation and their detection by ionization spectroscopy. J Chem Phys 142(11):114,310. https://doi.org/10.1063/1.4914917

    Article  ADS  Google Scholar 

  4. Bergeman T, Qi J, Wang D, Huang Y, Pechkis HK, Eyler EE, Gould PL, Stwalley WC, Cline RA, Miller JD, Heinzen DJ (2006) Photoassociation of \(^{85}\rm Rb\) atoms into \(0_{u}^{+}\) states near the 5S+5P atomic limits. J Phys B At Mol Opt Phys 39(19):S813. https://doi.org/10.1088/0953-4075/39/19/s01

    Article  ADS  Google Scholar 

  5. Berninger M, Zenesini A, Huang B, Harm W, Nägerl HC, Ferlaino F, Grimm R, Julienne PS, Hutson JM (2013) Feshbach resonances, weakly bound molecular states, and coupled-channel potentials for cesium at high magnetic fields. Phys Rev A 87(3):032,517. https://doi.org/10.1103/physreva.87.032517

  6. Black ED (2001) An introduction to Pound-Drever-Hall laser frequency stabilization. Am J Phys 69(1):79–87. https://doi.org/10.1119/1.1286663

    Article  ADS  Google Scholar 

  7. Boesten HMJM, Tsai CC, Verhaar BJ, Heinzen DJ (1996) Observation of a shape resonance in cold-atom scattering by pulsed photoassociation. Phys Rev Lett 77(26):5194–5197. https://doi.org/10.1103/physrevlett.77.5194

    Article  ADS  Google Scholar 

  8. Bohn JL, Julienne PS (1999) Semianalytic theory of laser-assisted resonant cold collisions. Phys Rev A 60:414–425. https://doi.org/10.1103/PhysRevA.60.414

    Article  ADS  Google Scholar 

  9. Boisseau C, Audouard E, Vigué J, Julienne PS (2000) Reflection approximation in photoassociation spectroscopy. Phys Rev A 62(052):705. https://doi.org/10.1103/PhysRevA.62.052705

    Article  Google Scholar 

  10. Borkowski M (2018) Optical lattice clocks with weakly bound molecules. Phys Rev Lett 120(8):083,202. https://doi.org/10.1103/physrevlett.120.083202

  11. Borkowski M, Morzyński P, Ciuryło R, Julienne PS, Yan M, DeSalvo BJ, Killian TC (2014) Mass scaling and nonadiabatic effects in photoassociation spectroscopy of ultracold strontium atoms. Phys Rev A 90(032):713. https://doi.org/10.1103/PhysRevA.90.032713

    Article  Google Scholar 

  12. Brown JM, Carrington A (2003) Rotational spectroscopy of diatomic molecules. Cambridge University Press. https://doi.org/10.1017/cbo9780511814808

    Article  ADS  Google Scholar 

  13. Brue DA, Hutson JM (2013) Prospects of forming ultracold molecules in \(^{2} \Sigma \) states by magnetoassociation of alkali-metal atoms with Yb. Phys Rev A 87(5):052,709. https://doi.org/10.1103/physreva.87.052709

  14. Bruni C, Görlitz A (2016) Observation of hyperfine interaction in photoassociation spectra of ultracold RbYb. Phys Rev A 94(2):022,503. https://doi.org/10.1103/physreva.94.022503

  15. Carrington A, Pyne CH, Shaw AM, Taylor SM, Hutson JM, Law MM (1996) Microwave spectroscopy and interaction potential of the long-range He\(\cdots \)Kr\(^{+}\) ion: an example of Hund’s case (e). J Chem Phys 105(19):8602–8614. https://doi.org/10.1063/1.472999

    Article  ADS  Google Scholar 

  16. Chin C, Vuletić V, Kerman AJ, Chu S, Tiesinga E, Leo PJ, Williams CJ (2004) Precision Feshbach spectroscopy of ultracold Cs\(_{2}\). Phys Rev A 70(3):032,701. https://doi.org/10.1103/physreva.70.032701

  17. Chin C, Flambaum VV, Kozlov MG (2009) Ultracold molecules: new probes on the variation of fundamental constants. New J Phys 11(5):055,048. https://doi.org/10.1088/1367-2630/11/5/055048

    Article  ADS  Google Scholar 

  18. Chin C, Grimm R, Julienne P, Tiesinga E (2010) Feshbach resonances in ultracold gases. Rev Mod Phys 82(2):1225. https://doi.org/10.1103/revmodphys.82.1225

    Article  ADS  Google Scholar 

  19. Ciamei A, Bayerle A, Chen CC, Pasquiou B, Schreck F (2017) Efficient production of long-lived ultracold \({\rm sr}_{2}\) molecules. Phys Rev A 96(013):406. https://doi.org/10.1103/PhysRevA.96.013406

    Article  Google Scholar 

  20. Comparat D (2004) Improved LeRoy-Bernstein near-dissociation expansion formula, and prospect for photoassociation spectroscopy. J Chem Phys 120(3):1318–1329. https://doi.org/10.1063/1.1626539

    Article  ADS  Google Scholar 

  21. Comparat D, Drag C, Tolra BL, Fioretti A, Pillet P, Crubellier A, Dulieu O, Masnou-Seeuws F (2000) Formation of cold Cs ground state molecules through photoassociation in the pure long-range state. Eur Phys J D 11(1):59–71. https://doi.org/10.1007/s100530070105

    Article  ADS  Google Scholar 

  22. Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R, Bouloufa N, Dulieu O, Ritsch H, Nägerl HC (2008) Quantum gas of deeply bound ground state molecules. Science 321(5892):1062–1066. https://doi.org/10.1126/science.1159909

    Article  ADS  Google Scholar 

  23. Danzl JG, Mark MJ, Haller E, Gustavsson M, Hart R, Aldegunde J, Hutson JM, Nägerl HC (2010) An ultracold high-density sample of rovibronic ground-state molecules in an optical lattice. Nat Phys 6(4):265–270. https://doi.org/10.1038/nphys153

    Article  Google Scholar 

  24. Deiglmayr J, Grochola A, Repp M, Mörtlbauer K, Glück C, Lange J, Dulieu O, Wester R, Weidemüller M (2008) Formation of ultracold polar molecules in the rovibrational ground state. Phys Rev Lett 101(13):133,004. https://doi.org/10.1103/PhysRevLett.101.133004

  25. Dion CM, Drag C, Dulieu O, Laburthe Tolra B, Masnou-Seeuws F, Pillet P (2001) Resonant coupling in the formation of ultracold ground state molecules via photoassociation. Phys Rev Lett 86:2253–2256. https://doi.org/10.1103/PhysRevLett.86.2253

    Article  ADS  Google Scholar 

  26. Drever RWP, Hall JL, Kowalski FV, Hough J, Ford GM, Munley AJ, Ward H (1983) Laser phase and frequency stabilization using an optical resonator. Appl Phys B 31(2):97–105. https://doi.org/10.1007/BF00702605

    Article  ADS  Google Scholar 

  27. Fioretti A, Comparat D, Crubellier A, Dulieu O, Masnou-Seeuws F, Pillet P (1998) Formation of cold \(\rm Cs_{2}\) molecules through photoassociation. Phys Rev Lett 80(20):4402. https://doi.org/10.1063/1.1302653

    Article  ADS  Google Scholar 

  28. Fioretti A, Comparat D, Drag C, Amiot C, Dulieu O, Masnou-Seeuws F, Pillet P (1999) Photoassociative spectroscopy of the Cs\(_{2} \, \, 0^{-}_{g}\) long-range state. Eur Phys J D 5(3):389–403. https://doi.org/10.1007/s100530050271

    Article  ADS  Google Scholar 

  29. Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013) Emcee: the MCMC hammer. Publ Astron Soc Pac 125(925):306–312. https://doi.org/10.1086/670067

    Article  ADS  Google Scholar 

  30. Fukuhara T, Sugawa S, Takahashi Y (2007) Bose-Einstein condensation of an ytterbium isotope. Phys Rev A 76(5):051,604. https://doi.org/10.1103/PhysRevA.76.051604

  31. Fukuhara T, Takasu Y, Kumakura M, Takahashi Y (2007) Degenerate Fermi gases of ytterbium. Phys Rev Lett 98(3):030,401. https://doi.org/10.1103/PhysRevLett.98.030401

  32. Gardner JR, Cline RA, Miller JD, Heinzen DJ, Boesten HMJM, Verhaar BJ (1995) Collisions of doubly spin-polarized, ultracold \(^{85}\rm Rb\) atoms. Phys Rev Lett 74(19):3764–3767. https://doi.org/10.1103/physrevlett.74.3764

    Article  ADS  Google Scholar 

  33. Goodman J, Weare J (2010) Ensemble samplers with affine invariance. Commun Appl Math Comput Sci 5(1):65–80. https://doi.org/10.2140/camcos.2010.5.65

    Article  MathSciNet  MATH  Google Scholar 

  34. Gregory PD, Molony PK, Köppinger MP, Kumar A, Ji Z, Lu B, Marchant AL, Cornish SL (2015) A simple, versatile laser system for the creation of ultracold ground state molecules. New J Phys 17(5):055,006. https://doi.org/10.1088/1367-2630/17/5/055006

    Article  ADS  Google Scholar 

  35. Guttridge A, Hopkins SA, Frye MD, McFerran JJ, Hutson JM, Cornish SL (2018) Production of ultracold \({\rm cs\mathit{}^{*}\rm Yb}\) molecules by photoassociation. Phys Rev A 97(063):414. https://doi.org/10.1103/PhysRevA.97.063414

    Article  Google Scholar 

  36. Herzberg G (1989) Molecular spectra and molecular structure: spectra of diatomic molecules. Van Nostrand, New York

    Google Scholar 

  37. Hughes IG, Hase TPA (2010) Measurements and their uncertainties. Oxford University Press

    Google Scholar 

  38. Jones KM, Tiesinga E, Lett PD, Julienne PS (2006) Ultracold photoassociation spectroscopy: long-range molecules and atomic scattering. Rev Mod Phys 78(2):483–535. https://doi.org/10.1103/revmodphys.78.483

    Article  ADS  Google Scholar 

  39. Julienne P (1996) Cold binary atomic collisions in a light field. J Res Nat Inst Stand Technol 101(4):487. https://doi.org/10.6028/jres.101.050

    Article  Google Scholar 

  40. Julienne PS, Suominen KA, Band Y (1994) Complex-potential model of collisions of laser-cooled atoms. Phys Rev A 49(5):3890–3896. https://doi.org/10.1103/physreva.49.3890

    Article  ADS  Google Scholar 

  41. Junker M, Dries D, Welford C, Hitchcock J, Chen YP, Hulet RG (2008) Photoassociation of a Bose-Einstein condensate near a Feshbach resonance. Phys Rev Lett 101(6):060,406. https://doi.org/10.1103/physrevlett.101.060406

  42. Kerman AJ, Sage JM, Sainis S, Bergeman T, DeMille D (2004) Production of ultracold polar RbCs\(^{\ast }\) molecules via photoassociation. Phys Rev Lett 92(3):033,004. https://doi.org/10.1103/physrevlett.92.033004

  43. Kitagawa M, Enomoto K, Kasa K, Takahashi Y, Ciuryło R, Naidon P, Julienne PS (2008) Two-color photoassociation spectroscopy of ytterbium atoms and the precise determinations of \(s\)-wave scattering lengths. Phys Rev A 77(1):012,719. https://doi.org/10.1103/physreva.77.012719

  44. Köppinger M (2014) Creation of ultracold RbCs molecules. PhD thesis, Durham University

    Google Scholar 

  45. Kraft SD, Mudrich M, Staudt MU, Lange J, Dulieu O, Wester R, Weidemüller M (2005) Saturation of Cs\(_{2}\) photoassociation in an optical dipole trap. Phys Rev A 71(1). https://doi.org/10.1103/physreva.71.013417

  46. Krems RV (2008) Cold controlled chemistry. Phys Chem Chem Phys 10(28):4079–4092. https://doi.org/10.1039/B802322K

    Article  Google Scholar 

  47. Krzyzewski SP, Akin TG, Dizikes J, Morrison MA, Abraham ERI (2015) Observation of deeply bound \(^{85}\rm Rb_{2}\) vibrational levels using Feshbach optimized photoassociation. Phys Rev A 92(6):062,714. https://doi.org/10.1103/physreva.92.062714

  48. Le Roy RJ, Bernstein RB (1970) Dissociation energy and long-range potential of diatomic molecules from vibrational spacings of higher levels. J Chem Phys 52(8):3869–3879. https://doi.org/10.1063/1.1673585

    Article  ADS  Google Scholar 

  49. Legaie R, Picken CJ, Pritchard JD (2018) Sub-kilohertz excitation lasers for quantum information processing with rydberg atoms. J Opt Soc Am B 35(4):892–898. https://doi.org/10.1364/JOSAB.35.000892

    Article  ADS  Google Scholar 

  50. Lett PD, Julienne PS, Phillips WD (1995) Photoassociative spectroscopy of laser-cooled atoms. Annu Rev Phys Chem 46(1):423–452. https://doi.org/10.1146/annurev.pc.46.100195.002231

    Article  ADS  Google Scholar 

  51. Li P, Liu W, Wu J, Ma J, Fan Q, Xiao L, Sun W, Jia S (2017) New observation and analysis of the ultracold Cs\(_{2}\)\(0_{u}^{+}\) and \(1_{g}\) long-range states at the asymptote 6S\(_{1/2}\)+6P\(_{1/2}\). J Quant Spectrosc Radiat Transfer 196:176–181. https://doi.org/10.1016/j.jqsrt.2017.04.014

    Article  ADS  Google Scholar 

  52. Lignier H, Fioretti A, Horchani R, Drag C, Bouloufa N, Allegrini M, Dulieu O, Pruvost L, Pillet P, Comparat D (2011) Deeply bound cold caesium molecules formed after \(0^{-}_{g}\) resonant coupling. Phys Chem Chem Phys 13(42):18,910. https://doi.org/10.1039/c1cp21488h

    Article  Google Scholar 

  53. Lisdat C, Vanhaecke N, Comparat D, Pillet P (2002) Line shape analysis of two-colour photoassociation spectra on the example of the Cs ground state. Eur Phys J D 21(3):299–309. https://doi.org/10.1140/epjd/e2002-00209-9

    Article  ADS  Google Scholar 

  54. Liu W, Xu R, Wu J, Yang J, Lukashov SS, Sovkov VB, Dai X, Ma J, Xiao L, Jia S (2015) Observation and deperturbation of near-dissociation ro-vibrational structure of the Cs\(_{2}\) state \(0_{u}^{+} \left(a ^{1}{\Sigma }_{u}^{+} \sim b ^{3}{\Pi }_{u}\right)\) at the asymptote 6S\(_{1/2}\)+6P\(_{1/2}\). J Chem Phys 143(12):124,307. https://doi.org/10.1063/1.4931646

    Article  ADS  Google Scholar 

  55. Ma J, Liu W, Yang J, Wu J, Sun W, Ivanov VS, Skublov AS, Sovkov VB, Dai X, Jia S (2014) New observation and combined analysis of the \(\rm Cs_{2} \, 0_{g}^{-}, 0_{u}^{+}\), and \(1_{g}\) states at the asymptotes 6S\(_{1/2}\)+6P\(_{1/2}\) and 6S\(_{1/2}\)+6P\(_{3/2}\). J Chem Phys 141(24):244,310. https://doi.org/10.1063/1.4904265

    Article  ADS  Google Scholar 

  56. Masnou-Seeuws F, Pillet P (2001) Formation of ultracold molecules (\({\rm T}\le 200\,\upmu \)K) via photoassociation in a gas of laser-cooled atoms. Adv At Mol Opt Phy 47:53–127. https://doi.org/10.1016/s1049-250x(01)80055-0

    Google Scholar 

  57. McGuyer BH, McDonald M, Iwata GZ, Tarallo MG, Grier AT, Apfelbeck F, Zelevinsky T (2015) High-precision spectroscopy of ultracold molecules in an optical lattice. New J Phys 17(5):055,004. https://doi.org/10.1088/1367-2630/17/5/055004

    Article  ADS  Google Scholar 

  58. Meniailava DN, Shundalau MB (2017) Multi-reference perturbation theory study on the CsYb molecule including the spin-orbit coupling. Comput Theor Chem 1111:20–26. https://doi.org/10.1016/j.comptc.2017.03.046

    Article  Google Scholar 

  59. Mickelson PG, Martinez YN, Saenz AD, Nagel SB, Chen YC, Killian TC, Pellegrini P, Côté R (2005) Spectroscopic determination of the \(s\)-wave scattering lengths of \(^{86}\)Sr and \(^{88}\)Sr. Phys Rev Lett 95(22). https://doi.org/10.1103/physrevlett.95.223002

  60. Mulliken RS (1930) The interpretation of band spectra. Parts I, IIa, IIb. Rev Mod Phys 2(1):60–115. https://doi.org/10.1103/revmodphys.2.60

    Article  ADS  Google Scholar 

  61. Münchow F, Bruni C, Madalinski M, Gorlitz A (2011) Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys Chem Chem Phys 13(42):18,734. https://doi.org/10.1039/c1cp21219b

    Article  Google Scholar 

  62. Nemitz N, Baumer F, Münchow F, Tassy S, Görlitz A (2009) Production of heteronuclear molecules in an electronically excited state by photoassociation in a mixture of ultracold Yb and Rb. Phys Rev A 79(6):061,403. https://doi.org/10.1103/PhysRevA.79.061403

  63. Pellegrini P, Gacesa M, Côté R (2008) Giant formation rates of ultracold molecules via Feshbach-optimized photoassociation. Phys Rev Lett 101(5):053,201. https://doi.org/10.1103/physrevlett.101.053201

  64. Pichler M, Chen H, Stwalley WC (2004) Photoassociation spectroscopy of ultracold Cs below the 6P\(_{1/2}\) limit. J Chem Phys 121(4):1796–1801. https://doi.org/10.1063/1.1767071

    Article  ADS  Google Scholar 

  65. Pichler M, Chen H, Stwalley WC (2004) Photoassociation spectroscopy of ultracold Cs below the 6P\(_{3/2}\) limit. J Chem Phys 121(14):6779–6784. https://doi.org/10.1063/1.1788657

    Article  ADS  Google Scholar 

  66. Pichler M, Stwalley WC, Dulieu O (2006) Perturbation effects in photoassociation spectra of ultracold Cs\(_{2}\). J Phys B: At, Mol Opt Phys 39(19):S981. https://doi.org/10.1088/0953-4075/39/19/S12

    Article  ADS  Google Scholar 

  67. Pruvost L, Jelassi H (2010) Weakly bound (6S\(_{1/2}\)+6P\(_{1/2}\)) \(0^{-}_{ g}\) Cs\(_2\) levels analysed using the vibrational quantum defect: detection of two deeply bound (6S\(_{1/2}\)+6P\(_{1/2}\)) \(0^{-}_{ g}\) levels. J Phys B: At, Mol Opt Phys 43(12):125,301. https://doi.org/10.1088/0953-4075/43/12/125301

    Article  ADS  Google Scholar 

  68. Roy R, Shrestha R, Green A, Gupta S, Li M, Kotochigova S, Petrov A, Yuen CH (2016) Photoassociative production of ultracold heteronuclear YbLi\(^{\ast }\) molecules. Phys Rev A 94(3):033,413. https://doi.org/10.1103/physreva.94.033413

  69. Safronova MS, Budker D, DeMille D, Kimball DFJ, Derevianko A, Clark CW (2018) Search for new physics with atoms and molecules. Rev Mod Phys 90(025):008. https://doi.org/10.1103/RevModPhys.90.025008

    Article  MathSciNet  Google Scholar 

  70. Sage JM, Sainis S, Bergeman T, DeMille D (2005) Optical production of ultracold polar molecules. Phys Rev Lett 94(20):203,001. https://doi.org/10.1103/physrevlett.94.203001

  71. Sivia D, Skilling J (2006) Data analysis: a Bayesian tutorial. Oxford University Press

    Google Scholar 

  72. Steck DA (2010) Cesium D line data. http://steck.us/alkalidata (revision 2.1.4)

  73. Stellmer S, Pasquiou B, Grimm R, Schreck F (2012) Creation of ultracold Sr\(_{2}\) molecules in the electronic ground state. Phys Rev Lett 109(11):115,302. https://doi.org/10.1103/PhysRevLett.109.115302

  74. Sugawa S, Yamazaki R, Taie S, Takahashi Y (2011) Bose-Einstein condensate in gases of rare atomic species. Phys Rev A 84(1):011,610. https://doi.org/10.1103/PhysRevA.84.011610

  75. Taie S, Takasu Y, Sugawa S, Yamazaki R, Tsujimoto T, Murakami R, Takahashi Y (2010) Realization of a \({\rm SU} (2)\times {\rm SU} (6)\) system of fermions in a cold atomic gas. Phys Rev Lett 105(19):190,401. https://doi.org/10.1103/PhysRevLett.105.190401

  76. Takasu Y, Takahashi Y (2009) Quantum degenerate gases of ytterbium atoms. J Phys Soc Jpn 78(1):012,001. https://doi.org/10.1143/JPSJ.78.012001

    Article  ADS  Google Scholar 

  77. Takasu Y, Maki K, Komori K, Takano T, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2003) Spin-singlet Bose-Einstein condensation of two-electron atoms. Phys Rev Lett 91(4):040,404. https://doi.org/10.1103/PhysRevLett.91.040404

  78. Takasu Y, Komori K, Honda K, Kumakura M, Yabuzaki T, Takahashi Y (2004) Photoassociation spectroscopy of laser-cooled ytterbium atoms. Phys Rev Lett 93(123):202. https://doi.org/10.1103/PhysRevLett.93.123202

    Article  Google Scholar 

  79. Thorpe JI, Numata K, Livas J (2008) Laser frequency stabilization and control through offset sideband locking to optical cavities. Opt Express 16(20):15,980. https://doi.org/10.1364/oe.16.015980

    Article  ADS  Google Scholar 

  80. Tiesinga E, Williams C, Julienne P, Jones K, Lett P, Phillips W (1996) A spectroscopic determination of scattering lengths for sodium atom collisions. J Res Nat Inst Stand Technol 101(4):505. https://doi.org/10.6028/jres.101.051

    Article  Google Scholar 

  81. Tolra BL, Drag C, Pillet P (2001) Observation of cold state-selected cesium molecules formed by stimulated Raman photoassociation. Phys Rev A 64(6):061,401. https://doi.org/10.1103/physreva.64.061401

  82. Tolra BL, Hoang N, T’Jampens B, Vanhaecke N, Drag C, Crubellier A, Comparat D, Pillet P (2003) Controlling the formation of cold molecules via a Feshbach resonance. Europhys Lett 64(2):171–177. https://doi.org/10.1209/epl/i2003-00284-x

    Article  ADS  Google Scholar 

  83. Udem T, Reichert J, Holzwarth R, Hänsch TW (1999) Absolute optical frequency measurement of the cesium \({\mathit{d}}_{1}\) line with a mode-locked laser. Phys Rev Lett 82(18):3568–3571. https://doi.org/10.1103/physrevlett.82.3568

    Article  ADS  Google Scholar 

  84. Vanhaecke N, de Souza Melo W, Tolra BL, Comparat D, Pillet P (2002) Accumulation of cold cesium molecules via photoassociation in a mixed atomic and molecular trap. Phys Rev Lett 89(6):063,001. https://doi.org/10.1103/physrevlett.89.063001

  85. Vanhaecke N, Lisdat C, T’Jampens B, Comparat D, Crubellier A, Pillet P (2004) Accurate asymptotic ground state potential curves of Cs\(_{2}\) from two-colour photoassociation. Eur Phys J D 28(3):351–360. https://doi.org/10.1140/epjd/e2004-00001-y

    Article  ADS  Google Scholar 

  86. Weiner J, Bagnato VS, Zilio S, Julienne PS (1999) Experiments and theory in cold and ultracold collisions. Rev Mod Phys 71(1):1–85. https://doi.org/10.1103/revmodphys.71.1

    Article  ADS  Google Scholar 

  87. Wu J, Ma J, Zhang Y, Li Y, Wang L, Zhao Y, Chen G, Xiao L, Jia S (2011) High sensitive trap loss spectroscopic detection of the lowest vibrational levels of ultracold molecules. Phys Chem Chem Phys 13(42):18,921. https://doi.org/10.1039/c1cp22314c

    Article  Google Scholar 

  88. Zabawa P, Wakim A, Haruza M, Bigelow NP (2011) Formation of ultracold \({X}^{1}{\Sigma }^{+}(v^{^{\prime }}=0)\) NaCs molecules via coupled photoassociation channels. Phys Rev A 84(061):401. https://doi.org/10.1103/PhysRevA.84.061401

    Article  Google Scholar 

  89. Zelevinsky T, Kotochigova S, Ye J (2008) Precision test of mass-ratio variations with lattice-confined ultracold molecules. Phys Rev Lett 100(4):043,201. https://doi.org/10.1103/physrevlett.100.043201

  90. Zuchowski PS, Hutson JM (2010) Reactions of ultracold alkali-metal dimers. Phys Rev A 81(6):060,703. https://doi.org/10.1103/PhysRevA.81.060703

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Guttridge .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guttridge, A. (2019). One-Photon Photoassociation. In: Photoassociation of Ultracold CsYb Molecules and Determination of Interspecies Scattering Lengths. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-21201-8_7

Download citation

Publish with us

Policies and ethics