Skip to main content

Metastability: A Brief Introduction Through Three Examples

  • Chapter
  • First Online:
Book cover World Women in Mathematics 2018

Part of the book series: Association for Women in Mathematics Series ((AWMS,volume 20))

  • 431 Accesses

Abstract

Metastability is a very frequent phenomenon in nature. It also finds many applications in science and engineering. A noticeable basic feature is the presence of “quasi-equilibria states” and relatively sudden transitions between them. The goal of this short expository note is to discuss some aspects of the stochastic modeling of metastability, usually done through the consideration of special stochastic processes. This includes a “pathwise approach” developed since the 1980s. Thought as an invitation to the readership, three examples are quickly reviewed, starting with a class of reaction-diffusion equations subject to a small stochastic noise, for which the theory of large deviations has been a very useful tool, and further precision achieved through the help of potential theoretical techniques. We present then brief summaries of results on the Harris contact process on suitable finite graphs, and a quick discussion of stochastic dynamics for the well-known Ising model. The first can be thought as an oversimplified model for the propagation of an infection, and the second has been used in the context of magnetization. From a probabilistic analysis and technical viewpoint, the Ising model enjoys time-reversibility, which provides useful tools, while the contact process is non-reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 19.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 29.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 29.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    V  is the set of vertices and \(\mathcal {E}\) denotes the set of unordered edges.

  2. 2.

    Right continuous, with left limits.

  3. 3.

    We write h∕2 instead of h in (19) just to match with the notation in [30, 55].

  4. 4.

    This is not the situation described in the previous page where h → 0 and the volume must grow. It is much simpler and opened the door to a huge amount of work in the mathematical description.

References

  1. S. M. Allen and J. W. Cahn: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica 27, 1085–1095 (1979)

    Article  Google Scholar 

  2. J. Barrera, O. Bertoncini, R. Fernández: Abrupt convergence and escape behavior for birth and death chains. J. Stat. Phys. 137 (4), 595–623 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. F. Barret: Sharp asymptotics of metastable transition times for one dimensional spdes. Ann. Inst. H. Poincaré Probab. Statist. 51 (1), 129–166 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. D. J. Barsky, G. Grimmett, C. M. Newman: Percolation in half-spaces: equality of critical probabilities and continuity of the percolation probability. Probab. Theory Relat. Fields 90 (1), 111–148 (1991)

    Article  MATH  Google Scholar 

  5. N. Berger, C. Borgs, J. T. Chayes, A. Saberi: Asymptotic behavior and distributional limits of preferential attachment graphs. Ann. Probab. 42, 1–40 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. C. Bezuidenhout, G. Grimmett: The critical contact process dies out. Ann. Probab.18 (4), 1462–1482 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. Bianchi, A. Gaudillière: Metastable states, quasi-stationary distributions and soft measures. Stochastic Process. Appl. 126 (6), 1622–1680 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bianchi, A. Gaudillière, P. Milanesi: On soft capacities, quasi-stationary distributions and the pathwise approach to metastability. arXiv:1807.11233

    Google Scholar 

  9. A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein: Metastability in reversible diffusion processes I: Sharp asymptotics for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Bovier, F. den Hollander: Metastability: A potential theoretic approach. Springer (2015)

    Google Scholar 

  11. S. Brassesco: Some results on small random perturbations of an infinite dimensional dynamical system. Stoch. Proc. Appl. 38, 33–53 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Brassesco, E. Presutti, V. Sidoravicius, M. E. Vares: Ergodicity of a Glauber+Kawasaki process with metastable states. Markov Proc. Relat. Fields 6 (2), 181–203 (2000)

    MathSciNet  MATH  Google Scholar 

  13. V. H. Can. Metastability for the contact process on the preferential attachment graph. Internet Math. 45pp. (2017)

    Google Scholar 

  14. N. Chafee and E. F. Infante: Bifurcation and stability for a nonlinear parabolic partial differential equation. Bull. Am. Math. Soc.80, 49–52 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Chatterjee, R. Durrett: Contact process on random graphs with degree power law distribution have critical value zero. Ann. Probab. 37, 2332–2356 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. W. Chen: The contact process on a finite system in higher dimensions, Chinese J. Contemp. Math. 15 13–20 (1994)

    MathSciNet  Google Scholar 

  17. M. Cramston, T. Mountford, J.-C. Mourrat, D. Valesin: The contact process on finite homogeneous trees revisited. Alea 11 (1), 385–408 (2014)

    MathSciNet  MATH  Google Scholar 

  18. M. Cassandro, A. Galves, E. Olivieri, M. E. Vares: Metastable behaviour of stochastic dynamics: a pathwise approach. J. Stat. Phys. 35, 603–634 (1984)

    Article  MATH  Google Scholar 

  19. A. De Masi, P. A. Ferrari, and J. L. Lebowitz: Reaction-diffusion equations for interacting particle systems. J. Stat. Phys. 44, 589–644 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Debussche, M. Hoegele, and P. Imkeller: Asymptotic first exit times of the Chafee-Infante equation with small heavy-tailed Lévy noise. Electron. Commun. Probab. 16, 213–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Debussche, M. Högele, and P. Imkeller: The Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise, Lecture Notes in Mathematics 2085, Springer (2013)

    Google Scholar 

  22. R. Durrett: On the growth of one dimensional contact process. Ann. Probab. 8 (5), 890–907 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Durrett: Random Graph Dyamics. Cambridge Univ. Press, Cambridge (2007)

    Google Scholar 

  24. R. Durrett, X-F. Liu: The contact process on a finite set. Ann. Probab. 16 (3), 1158–1173 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  25. R. Durrett, R. H. Schonmann: The contact process on a finite set II. Ann.Probab. 16 (4), 1570–1583 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Farfan, C. Landim, K. Tsunoda: Static large deviations for a reaction-diffusion model. arXiv:1606.07227 (2016)

    Google Scholar 

  27. W. G. Faris and G. Jona-Lasinio: Large fluctuations for a nonlinear heat equation with noise. J. Phys. A 15, 3025–3055 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  28. M. I. Freidlin and A. D. Wentzell: Random Perturbations of Dynamical Systems. Grundlehren der mathematischen Wissenschaften. Springer, Berlin- Heidelberg (1998)

    Google Scholar 

  29. A. Galves, E. Olivieri, and M. E. Vares: Metastability for a class of dynamical systems subject to small random perturbations. Ann. Probab. 15, 1288–1305 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  30. A. Gaudillière, P. Milanesi, M. E. Vares. Asymptotic exponential law for the transition time to equilibrium of the metastable kinetic Ising model with vanishing magnetic field. arXiv:1809.07044

    Google Scholar 

  31. T. Harris: Contact interactions on a lattice. Ann. Probab. 2, 969–988 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  32. D. Henry: Geometric theory of semilinear parabolic equations. Lecture Notes in Mathematics 840, Berlin-Heidelberg-New York: Springer-Verlag., (1981)

    Google Scholar 

  33. A. Hinojosa: Exit time for a reaction diffusion model. Markov Processes and Related Filelds 10 (4), 705–744 (2005)

    MathSciNet  MATH  Google Scholar 

  34. M. Högele and I. Pavlyukevich: Metastability in a class of hyperbolic dynamical systems perturbed by heavy-tailed Lévy type noise. Stochastics and Dynamics 15(3) (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. H. A. Kramers: Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7 (4), 284–304 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  36. D. A. Levin, M. Luczak, and Y. Peres: Glauber dynamics for the Mean-field Ising Model: cut-off, critical power law, and metastability. Probab. Theory Rel. Fields 146, 233–265 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  37. T. M. Liggett: Interacting Particle Systems. Springer, New York (1985)

    Book  MATH  Google Scholar 

  38. T. M. Liggett: Stochastic Interacting Systems: Contact, Voter and Exclusion Processes. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  39. F. Martinelli, E. Olivieri, and E. Scoppola: Small random perturbations of finite and infinite-dimensional dynamical systems: Unpredictability of exit times. Journal of Statistical Physics 55, 477–504 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  40. T. S. Mountford: A metastable result for the finite multidimensional contact process. Can. Math. Bull. 36 (2), 216–226 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  41. T. S. Mountford: Existence of a constant for finite system extinction. J. Stat. Phys. 96 (5/6), 1331–1341 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  42. T. Mountford, J.-C. Mourrat, D. Valesin, Q. Yao: Exponential extinction time of the contact process on finite graphs. Stoch. Proc. Appl. 216, 1974–2013 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  43. T. Mountford, D. Valesin, Q. Yao: Metastable densities for the contact process on power law random graphs. Electron. J. Probab. 18, 1–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. J.-C. Mourrat, D. Valesin: Phase transition of the contact process on random regular graphs. Electron. J. Probab.21, 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  45. E. J. Neves, R. H. Schonmann: Critical droplets and metastability for a Glauber dynamics at very low temperatures. Commun. Math. Phys. 137, 209–230 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  46. E. J. Neves, R. H. Schonmann: Behaviour of droplets for a class of Glauber dynamics at very low temperatures. Probab. Theory Relat. Fields 91, 331–354 (1992)

    Article  MATH  Google Scholar 

  47. E. Olivieri, M. E. Vares: Large deviations and metastability. Cambridge University Press (2005)

    Google Scholar 

  48. R. Pemantle: The contact process on trees. Ann. Probab. 20, 2089–2116 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  49. O. Penrose, J. L. Lebowitz: Rigorous treatment of metastable states in the van der Waals-Maxwell Theory. J. Stat. Phys. 3, 211–241 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  50. M. Salzano: The contact process on graphs. PhD thesis, UCLA, (2000). (Reprinted Publicações Matemáticas. IMPA, 2003.)

    Google Scholar 

  51. M. Salzano, R. Schonmann: A new proof that for the contact process on homogeneous trees local survival implies complete convergence. Ann. Probab. 26, 1251–1258 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  52. R. H. Schonmann: Metastability for the contact process. J. Stat. Phys. 41 (3/4), 445–484 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  53. R. H. Schonmann: The pattern of escape from metastability of a stochastic Ising model. Commun. Math. Phys. 147, 231–240 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  54. R. H. Schonmann: Theorems and conjectures on the droplet driven relaxation of stochastic Ising model. In Probability and Phase Transition, ed. G. Grimmett. NATO ASI Series. Dordrecht, Kluwer, 265–301 (1994)

    Chapter  MATH  Google Scholar 

  55. R. H. Schonmann, S. Shlosman: Wulff droplets and the metastable relaxation of kinetic Ising models. Commun. Math. Phys.194 (2), 389–462 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  56. A. Simonis: Metastability of the d-dimensional contact process. J. Stat. Phys. 83 (5/6), 1225–1239 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  57. M. Stacey: The existence of an intermediate phase for the contact process on tress. Ann. Probab. 24, 1711–1726 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. Y. Zhang: The complete convergence theorem of the contact process on trees. Ann. Probab. 24, 1408–1443 (1996)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

M. E. Vares acknowledges support of CNPq (grant 305075/2016-0) and FAPERJ (grant E-26/203.048/2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Eulalia Vares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Association for Women in Mathematics and the Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brassesco, S., Vares, M.E. (2019). Metastability: A Brief Introduction Through Three Examples. In: Araujo, C., Benkart, G., Praeger, C., Tanbay, B. (eds) World Women in Mathematics 2018. Association for Women in Mathematics Series, vol 20. Springer, Cham. https://doi.org/10.1007/978-3-030-21170-7_3

Download citation

Publish with us

Policies and ethics