Skip to main content

Comparative Analysis of the Classification of Maximum Reality (MVS) and the Spectral Angle Mapper (SAM) of an Aster Image. Case Study: Soil Occupancy in the Main Area (Tunisia)

  • Chapter
  • First Online:
Mapping and Spatial Analysis of Socio-economic and Environmental Indicators for Sustainable Development

Part of the book series: Advances in Science, Technology & Innovation ((ASTI))

Abstract

The vegetation cover of the area of Mateur (Tunisia) is characterized by the heterogeneity of its settlements. Such a heterogeneity is caused by the interaction of anthropic, pedological, and climatic factors. In addition, these space and spectral heterogeneities limit the reliability of the conventional methods of classification related to the satellite imagery. Thus, in the present study, we propose the recourse to the methods based on the spectral similarity to chart the dominant vegetable species of the ecosystem of Mateur, that is to say the Spectral angle mapper (SAM) and the classification of maximum of probabilities (MVS). We also aim at not only comparing procedures of extraction of the “pure” spectral signatures prototypes, known as endmembers for the SAM approach but also identifying the pieces of drives for the classification MVS in terms of the cartography of the dominant vegetable species of this area. For so doing, we have used images acquired by the sensor thermal (Advanced ASTER spaceborne emission and reflection radiometer. The results obtained show that the use of the methods of SAM and MVS led to similar results in terms of distribution of the species charted, but with differences in the plan of the surfaces affected by these species. The comparison between the results obtained using MVS and those of classification by maximum of probability indicates that SAM allows to classify the dominant vegetable cover with a better precision than MVS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cyr, L., Bonn, F., & Pesant, A. (1995). Vegetation indices derived from re-mote sensing for an estimation of soil protection against water erosion. Ecological Modelling, 79, 277–285.

    Article  Google Scholar 

  2. Biard, F., & Baret, F. (1997). Crop residue estimation using multiband re-flectance. Remote Sensing of Environement, 59, 530–536.

    Article  Google Scholar 

  3. Hill, J., Hostert, P., Tsiurlis, G., Kasapidis, P., Udelhoven, Th, & Diemer, C. (1998). Monitoring 20 years of intense grazing impact on the Greek island of Crete with earth observation satellites. Journal of Arid Environnent, 39, 165–178.

    Article  Google Scholar 

  4. Arsenault, E., & Bonn, F. (2001). Evaluation of soil erosion protective cover by crop residues using vegetation indices and spectral mixture analysis of multispectral and hyperspectral data. Proceedings of the 23rd Canadian Symposium on Remote Sensing. 21–24 août 2001, Association Québécoise de télédétection.

    Google Scholar 

  5. Bannari, A., Teillet, P., Leckie, D., & Fedosejevs, G. (1999). Impact des con-ditions internes et externes au couvert forestier sur les indices spectraux dérivés de simulations spectrales de AVHRR. Télédétection, 1, 157–181.

    Google Scholar 

  6. Elmore, A. J., Mustard, J. F., Manning, S. J., & Lobell, D. B. (2000). Quantifying vegetation change in semiarid environments: Precision and accuracy of spectral mixture analysis and the normalized difference vegeta-tion index. Remote Sensing of Environment, 73(1), 87–102.

    Article  Google Scholar 

  7. Hostert, P., Roder, A., & Hill, J. (2003). Coupling spectral unmixing and trend analysis for monitoring of long-term vegetation dynamics in Mediterranean rangelands. Remote Sensing of Environment, 87(2–3), 183–197.

    Article  Google Scholar 

  8. Clark, R. N., King, T. V. V., Ager, C., & Swayze, G. A. (1995). Initial vegeta-tion species and senescence/stress mapping in the San Luis Valley, Colorado using imaging spectrometer data (pp. 64–69). In: H.H. Posey, J.A. Pendelton & D. Van Zyl (red.), Proceedings: Summitville Forum 95 (vol. 38, pp. 56–73). Colorado: Colorado Geological Sur-vey Special Publication.

    Google Scholar 

  9. Kruse, F. A., Lefkoff, A. B., Boardman, J. W., Heiderbrecht, K. B., Shapiro, P. J., & Goetz, A. F. H. (1993). The spectral image processing system (SIPS) - interactive visualisation and analysis of imaging spectrometer data. Remote Sensing of Environment, 44(2–3), 145–163.

    Article  Google Scholar 

  10. Dai, X., & Khorram, S. (1999). Data fusion using artificial neural net-works: a case study on multitemporal change analysis. Computers, Environment and Urban systems, 23, 19–31.

    Article  Google Scholar 

  11. Liu, J., Shao, G., Zhu, H., & Liu, S. (2005). A neural network ap-proach for enhancing information extraction from multispectral image data. Canadian Journal of Remote Sensing, 31(6), 432–438.

    Article  Google Scholar 

  12. Quarmby, N. A., Petropoulos, G. P., Vadrevu, K. P., Xanthopoulos, G., Karan-tounias, G., & Scholze1, M. (2010). A comparison of spectral angle mapper and artificial neural network classifiers combined with Landsat TM imagery analysis for obtaining burnt area mapping. Sensors (Basel) 10(3), 1967–1985. Published online 2010 Mar 11. https://doi.org/10.3390/s100301967.

    Article  Google Scholar 

  13. El_Rahman1, S. A. (2016). Performance of spectral angle mapper and parallelepiped classifiers in agriculture hyperspectral image (IJACSA). International Journal of Advanced Computer Science and Applications, 7(5), 55–63.

    Google Scholar 

  14. Margate, D. E., & Shrestha, D. P. (2001). The use of hyperspectral data in identifying desert-like soil surface features in Tabernas area, (red.) Proceedings of the 22nd Asian Conference on Remote Sensing, 5-9 novembre 2001, Centre for remote Imaging, Sensing and processing (CRISP) (pp. 736–741). National University of Singapore; Singapore Institute of Surveyors and Valuers (SISV); Asian Association on remote Sensing (AARS), Southeast Spain Singapore.

    Google Scholar 

  15. Chikhaoui, M., Bonn, F., Bokoye, L. A., & Merzouk, A. (2005). A spectral index for land degradation mapping using ASTER data: Application to a semi-arid Mediterranean catchment. International Journal of Applied Earth Observation and Geoinformation, 7, 140–153.

    Article  Google Scholar 

  16. Abdelrahim, A. M, El-Tyeb, S., Elmahlb, G. (2017). Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Land-sat imagery, Egypt. The Egyptian Journal of Remote Sensing and Space Science, 20(1), S21–S29. https://doi.org/10.1016/j.ejrs.2016.12.008.

    Article  Google Scholar 

  17. Sohn, Y., Moran, E., & Gurri, F. (1999). Deforestation in north-central Yucatan (1985–1995) mapping secondary succession of forest and ag-ricultural land use in sotuta using the cosine of the angle concept. Photogrammetric Engineering and Remote Sensing, 68, 1271–1280.

    Google Scholar 

  18. Yang, H., Van Der Meer, F., & Bakker, W. (1999). A back-propagation neural network for mineralogical mapping from AVIRIS data. International Journal of Remote Sensing, 20(1), 97–110.

    Article  Google Scholar 

  19. Sohn, Y., & Rebello, S. (2002). Supervised and unsupervised spectral angle classifiers. Photogrammetric Engineering and Remote Sensing, 68, 1271–1280.

    Google Scholar 

  20. Zhang, M., Qin, Z., Liu, X., & Ustin, S. L. (2003). Detection of stress in to-matoes induced by late blight disease in California, USA, using hyperspectral remote sensing. International Journal of Applied Earth Observation and Geoinformation, 4, 295–310.

    Article  Google Scholar 

  21. Hasan, E., Fagin, T., Alfy, Z., & Hong, Y. (2016). Spectral Angle Mapper and aeromagnetic data integration for gold-associated alteration zone mapping: A case study for the Central Eastern Desert Egypt (pp. 1762–1776). Received 02 Sep 2015, Accepted 07 Mar 2016, Published online: 13 Apr 2016 Download cita-tion. https://doi.org/10.1080/01431161.2016.1165887.

    Article  Google Scholar 

  22. Liu, D., Cao, C., Chen, W., Ni, X., Tian, R., & Xing, X. (2016). Monitoring and predicting the degradation of a semiarid wetland due to climate change and water abstraction in the Ordos Larus relictus National Nature Reserve, China (pp. 367–383). Received 21 Dec 2014, Accepted 30 Jul 2016, Published online: 03 Oct 2016 Download citation. https://doi.org/10.1080/19475705.2016.1220024.

    Article  Google Scholar 

  23. Bangira, T., Alfieri, S. M., Menenti, M., van Niekerk, A., & Vekerdy, Z. (2017). A spectral unmixing method with ensemble estimation of endmembers: Application to flood mapping in the Caprivi floodplain. Remote Sensing, 9(10), 1–24. [1013] https://doi.org/10.3390/rs9101013.

    Article  Google Scholar 

  24. Tompkins, S., Mustard, J. F., Pieters, C. M., & Forsyth, D. W. (1997). Optimization of endmembers for spectral mixture analysis. Remote Sensing of Environment, 59(3), 472–489.

    Article  Google Scholar 

  25. Adams, J. B., Smith, M. O., & Gillespie, A. R. (1993). Imaging spectroscopy: Interpretation based on spectral mixture analysis. In C. M. Pieters & P. Engelet (red.) Remote geochemical analysis: Element and mineralogical com-position (pp. 145–166). New York: Cambridge University Press.

    Google Scholar 

  26. Bateson, A., & Curtiss, B. A. (1996). Method for manual endmember selection and spectral unmixing. Remote Sensing of Environment, 55(3), 229–243.

    Article  Google Scholar 

  27. Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and PAR assessment. Remote Sensing of Environment, 35, 161–173.

    Article  Google Scholar 

  28. Sang-Wook, K., & Chong-Hwa, P. (2004). Linear spectral mixture analysis of landsat imagery for Wetland Land-Cover classification in Pal-dang reservoir and vicinity. Korean Journal of Remote Sensing, 20(3), 197–205.

    Google Scholar 

  29. Boardman, J. W. (1993). Automated spectral unmixing of AVIRIS data using convex geometry concepts. Summaries, Fourth JPL Airborne Geoscience Workshop (vol. 1, pp. 11–14), JPL Publication 93-26.

    Google Scholar 

  30. Nadeau, C. (2000). Analyse des effets atmosphériques dans les données en télédétection du moyen infrarouge sur la classification des minéraux de surface en milieux aride. Mémoire de maîtrise, Département de géographie et télédétec-tion, Faculté des lettres et sciences humaines (116 p.). Québec, Canada: Université de Sherbrooke, Sher-brooke.

    Google Scholar 

  31. Boardman, J. W., Kruse, F. A., & Green, R. O. (1995). Mapping target signatures via partial unmixing of AVIRIS data. Summaries of the 5th JPL Airborne Earth Science Workshop (pp. 23–26). Pasadena, California: JPL Publication 95-11, Jet Propulsion Laboratory, California Institute of Technology.

    Google Scholar 

  32. Foody, G. M., & Cox, D. P. (1994). Sub-pixel land-cover composition estimation using a linear mixture model and fuzzy membership functions. International Journal of Remote Sensing, 15(3), 619–631.

    Article  Google Scholar 

  33. Jaafari, M. (1991). Minéralisations polyphasées associées aux calcaires campaniens du jabel el Ghreffa (district de Jalta) (p. 120). D.E.A en géologie, Faculté des Sciences de Tunis.

    Google Scholar 

  34. Roussev, G., Radivoev, B., & Papov, A. (1976). Gisement de plomb de Jalta. Rapport géologique, compagne de recherche 1974–1975. Société tunisienne d’expansion minière. Convention de renouvellement des réserves des mines en activité du 11 .06 .1974 - Technoexportstroy - Bulgarproremi - Bulgarie (101 p.).

    Google Scholar 

  35. Bonn, F., & Rochon, G. (1992). Précis de télédétection (vol. 1). Principes et méthodes (512 p.). Presses universitaires du Québec.

    Google Scholar 

  36. Robin, M. (1993). La télédétection des satellites aux systèmes d’information géographiques (318p p.). Coll. Nathan, F.

    Google Scholar 

  37. El abed, I. (2002). Apport de la télédétection et des systèmes d’information géographique à l’évaluation de la dégradation des sols par éro-sion hydrique (les abords de Ain Jelloula en Tunisie centrale. D.E.A en géologie (90 p.).

    Google Scholar 

  38. Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74.

    Article  Google Scholar 

  39. Scholte, K. H. (2005) Hyperspectral Remote Sensing and Mud Vol-canism in Azerbaijan (147 p.). Ph.D. Thesis, Delft University of Technology, Delft.

    Google Scholar 

  40. Kruse, F. A., & al. (1997). Techniques developed for geologic analysis of hyperspectral data applied to near-shore hyperspectral ocean data. Presented at the Fourth International Conference on Remote Sensing for Marine and Coastal Environments, Orlando, Florida. Retrieved March 17–19, 1997.

    Google Scholar 

  41. Boardman, J. W., & Kruse, F. A. (1994). Automated spectral anal-ysis: A geological example using AVIRIS data, northern Grapevine Moun-tains, Nevada. Proceedings Tenth Thematic Conference, Geologic Remote Sensing, 9–12 May 1994 (pp. 407–418). Texas: San Antonio.

    Google Scholar 

  42. Zhang, B., Wang, X., Liu, J., Zheng, L., & Tong, Q. (2000). Hyperspectral Im-age processing and analysis system (HIPAS) and its applications. Photogrammetric Engineering and Remote Sensing, 66(5), 605–606.

    Google Scholar 

  43. Crosta, A. P., Sabine, C., & Taranik, J. V. (1998). Hydrothermal alteration mapping at bodie, California, using AVIRIS hyperspectral data. Remote Sensing of Environment, 65(3), 309–319.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Gannouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gannouni, S., Rebai, N. (2020). Comparative Analysis of the Classification of Maximum Reality (MVS) and the Spectral Angle Mapper (SAM) of an Aster Image. Case Study: Soil Occupancy in the Main Area (Tunisia). In: Rebai, N., Mastere, M. (eds) Mapping and Spatial Analysis of Socio-economic and Environmental Indicators for Sustainable Development. Advances in Science, Technology & Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-21166-0_5

Download citation

Publish with us

Policies and ethics