Skip to main content

Statistical Archetypal Analysis for Cognitive Categorization

  • Conference paper
  • First Online:
New Statistical Developments in Data Science (SIS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 288))

Included in the following conference series:

  • 1203 Accesses

Abstract

Human knowledge develops through complex relationships between categories. In the era of Big Data, the concept of categorization implies data summarization in a limited number of well-separated groups that must be maximally and internally homogeneous at the same time. This proposal exploits archetypal analysis capabilities by finding a set of extreme points that can summarize entire data sets in homogeneous groups. The archetypes are then used to identify the best prototypes according to Rosch’s definition. Finally, in the geometric approach to cognitive science, the Voronoi tessellation based on the prototypes is used to define categorization. An example using a well-known wine dataset by Forina et al. illustrates the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams, B., Raubal, M.: A metric conceptual space algebra. In: Spatial Information Theory. Springer (2009)

    Google Scholar 

  2. Aitchison, J., Barceló-Vidal, C., Martín-Fernández, J., Pawlowsky-Glahn, V.: Logratio analysis and compositional distance. Math. Geol. 32(3), 271–275 (2000)

    Article  MATH  Google Scholar 

  3. Barsalou, L.W.: Deriving categories to achieve goals. In: Psychology of Learning and Motivation. Elsevier (1991)

    Google Scholar 

  4. Bien, J., Tibshirani, R.: Prototype selection for interpretable classification. Ann. Appl. Stat. 2403–2424 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bauckhage, C., Thurau, C.: Making archetypal analysis practical. In: DAGM-Symposium, pp. 272–281 (2009)

    Google Scholar 

  6. Chang, F., Lin, C.C., Lu, C.J.: Adaptive prototype learning algorithms: theoretical and experimental studies. J. Mach. Learn. Res. 7, 2125–2148 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Cowan, N.: The magical mystery four: how is working memory capacity limited, and why? Curr. Dir. Psychol. Sci. 19(1), 51–57 (2010)

    Article  Google Scholar 

  8. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. D’Esposito, M., Palumbo, F., Ragozini, G.: Interval archetypes: a new tool for interval data analysis. Stat. Anal. Data Min. 5(4), 322–335 (2012)

    Article  MathSciNet  Google Scholar 

  10. D’Esposito, M.R., Palumbo, F., Ragozini, G.: Archetypal Symbolic Objects, pp. 41–49. Springer, Berlin (2013)

    Chapter  Google Scholar 

  11. Diday, E.: Optimization in non-hierarchical clustering. Pattern Recognit. 6(1), 17–33 (1974)

    Article  MathSciNet  Google Scholar 

  12. Diday, E.: Categorization in symbolic data analysis. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, pp. 845–867. Elsevier Science Ltd, Oxford (2005)

    Chapter  Google Scholar 

  13. Edelsbrunner, H.: Algorithms in Combinatorial Geometry, vol. 10. Springer-Verlag, Berlin (1987)

    Book  MATH  Google Scholar 

  14. Eugster, M., Leisch, F., Seth, S.: Archetypes: archetypal analysis. In: R Package Version, pp. 2–2 (2014)

    Google Scholar 

  15. Fordellone, M., Palumbo, F.: Prototypes definition through consensus analysis between fuzzy c-means and archetypal analysis. Ital. J. Appl. Stat. 26(2), 141–162 (2014)

    Google Scholar 

  16. Forina, M., Armanino, C., Castino, M., Ubigli, M.: Multivariate data analysis as a discriminating method of the origin of wines. Vitis 25, 189–201 (1986)

    Google Scholar 

  17. Frigui, H., Nasraoui, O.: Unsupervised learning of prototypes and attribute weights. Pattern Recognit. 37(3), 567–581 (2004)

    Article  Google Scholar 

  18. Gärdenfors, P.: Conceptual Spaces: The Geometry of Thought. A Bradford Book, vol. 3, p. 16. MIT Press (2000)

    Google Scholar 

  19. Gärdenfors, P.: Concept Learning and Nonmonotonic Reasoning, pp. 823–843. Elsevier (2005)

    Google Scholar 

  20. Grolemund, G., Wickham, H.: A cognitive interpretation of data analysis. Int. Stat. Rev. 82(2), 184–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer (2011)

    Google Scholar 

  22. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  23. Lakoff, G.: Cognitive semantics. Mean. Ment. Represent. 8(1), 119–154. https://escholarship.org/uc/item/04086580 (1988)

  24. Lesot, M., Kruse, R.: Typicality degrees and fuzzy prototypes for clustering. In: Advances in Data Analysis, pp. 107–114. Springer (2007)

    Google Scholar 

  25. Lesot, M., Rifqi, M., Bouchon-Meunier, B.: Fuzzy prototypes: from a cognitive view to a machine learning principle. In: Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, pp. 431–452. Springer (2008)

    Google Scholar 

  26. Okabe, A., Boots, B., Sugihara, K.: Nearest neighbourhood operations with generalized voronoi diagrams: a review. Int. J. Geogr. Inf. Syst. 8(1), 43–71 (1994)

    Article  Google Scholar 

  27. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(06), 421–452 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  28. Porzio, G.C., Ragozini, G., Vistocco, D.: On the use of archetypes as benchmarks. Appl. Stoch. Model. Bus. Ind. 25, 419–437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Ragozini, G., Palumbo, F., D’Esposito, M.R.: Archetypal analysis for data-driven prototype identification. Stat. Anal. Data Min.: ASA Data Sci. J. (2016)

    Google Scholar 

  30. Rifqi, M.: Constructing prototypes from large databases. In: International conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems. IPMU’96, Granada, Spain. https://hal.archives-ouvertes.fr/hal-01075383 (1996)

  31. Robert, S.: Categorization, reasoning and memory from a neo-logical point of view. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, pp. 700-718. Elsevier (2005)

    Google Scholar 

  32. Rosch, E.: Natural categories. Cogn. Psychol. 4(3), 328–350 (1973)

    Article  Google Scholar 

  33. Rosch, E.: Prototype classification and logical classification: the two systems. In: New Trends in Conceptual Representation: Challenges to Piaget’s Theory, pp. 73–86 (1983)

    Google Scholar 

  34. Siemens, G.: Connectivism: A Learning Theory for the Digital Age. http://er.dut.ac.za/handle/123456789/69 (2014)

  35. Watson, D.F.: Computing the n-dimensional delaunay tessellation with application to Voronoi polytopes. Comput. J. 24(2), 167–172 (1981)

    Article  MathSciNet  Google Scholar 

  36. Zenker, F., Gärdenfors, P. (ed.): Applications of Conceptual Spaces: The Case for Geometric Knowledge Representation. Springer, Berlin; Synthese Library: Studies in Epistemology, Logic, Methodology, and Philosophy of Science. 24(2), 2–10. Springer (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Palumbo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santelli, F., Palumbo, F., Ragozini, G. (2019). Statistical Archetypal Analysis for Cognitive Categorization. In: Petrucci, A., Racioppi, F., Verde, R. (eds) New Statistical Developments in Data Science. SIS 2017. Springer Proceedings in Mathematics & Statistics, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-030-21158-5_7

Download citation

Publish with us

Policies and ethics