Skip to main content

Microtubules in Non-conventional Yeasts

  • Chapter
  • First Online:
Non-conventional Yeasts: from Basic Research to Application

Abstract

Microtubules polymerise from tubulin proteins and play a significant role in the growth and proliferation of eukaryotic cells. In yeasts, most studies on microtubules and tubulins have utilised the budding yeast Saccharomyces cerevisiae and fission yeast Schizosaccharomyces pombe model systems. However, more recently interest in the microtubules of other non-conventional yeast and fungal species has increased, both for investigation of biological processes such as fungal evolution and for applications such as developing antifungal drugs. We review the microtubule cytoskeleton and its role in yeast and fungal cellular processes in vivo and the tubulin proteins found in yeast cells and their study in vitro, together with the recent advances in cryoEM leading to detailed molecular structures of yeast microtubules. We examine what is known about the microtubule cytoskeleton in non-conventional yeasts and highlight the significant differences, as well as many conserved aspects, in their microtubule biology compared to the two model yeasts. Finally, we discuss the potential role of microtubules as drug targets for treatment of yeast and fungal infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adachi Y, Toda T, Niwa O, Yanagida M (1986) Differential expressions of essential and nonessential alpha-tubulin genes in Schizosaccharomyces pombe. Mol Cell Biol 6:2168–2178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adames NR, Cooper JA (2000) Microtubule interactions with the cell cortex causing nuclear movements in Saccharomyces cerevisiae. J Cell Biol 149:863–874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Adams IR, Kilmartin JV (1999) Localization of core spindle pole body (SPB) components during SPB duplication in Saccharomyces cerevisiae. J Cell Biol 145:809–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aire TA (2005) Short-term effects of carbendazim on the gross and microscopic features of the testes of Japanese quails (Coturnix coturnix japonica). Anat Embryol 210:43–49

    Article  CAS  Google Scholar 

  • Akhmanova A, Steinmetz MO (2015) Control of microtubule organization and dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16:711–726

    Article  CAS  PubMed  Google Scholar 

  • Al-Bassam J, Kim H, Flor-Parra I, Lal N, Velji H, Chang F (2012) Fission yeast Alp14 is a dose-dependent plus end-tracking microtubule polymerase. Mol Biol Cell 23:2878–2890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberti-Segui C, Dietrich F, Altmann-Jöhl R, Hoepfner D, Philippsen P (2001) Cytoplasmic dynein is required to oppose the force that moves nuclei towards the hyphal tip in the filamentous ascomycete Ashbya gossypii. J Cell Sci 114:975–986

    CAS  PubMed  Google Scholar 

  • Al-Ebaisat HS (2011) Synthesis and biological activities of some benzimidazoles derivatives. J Appl Sci Environ Manag 15:451–454

    CAS  Google Scholar 

  • Alfa CE, Hyams JS (1991) Microtubules in the fission yeast Schizosaccharomyces pombe contain only the tyrosinated form of alpha-tubulin. Cell Motil Cytoskeleton 18:86–93

    Article  CAS  PubMed  Google Scholar 

  • Alonso MC, Drummond DR, Kain S, Hoeng J, Amos L, Cross RA (2007) An ATP gate controls tubulin binding by the tethered head of kinesin-1. Science 316:120–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alonso A, Greenlee M, Matts J, Kline J, Davis KJ, Miller RK (2015) Emerging roles of sumoylation in the regulation of actin, microtubules, intermediate filaments, and septins. Cytoskeleton (Hoboken) 72:305–339

    Article  CAS  Google Scholar 

  • Alushin GM, Lander GC, Kellogg EH, Zhang R, Baker D, Nogales E (2014) High-resolution microtubule structures reveal the structural transitions in αβ-tubulin upon GTP hydrolysis. Cell 157:1117–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders A, Lourenço PCC, Sawin KE (2006) Noncore components of the fission yeast gamma-tubulin complex. Mol Biol Cell 17:5075–5093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arellano-Santoyo H, Geyer EA, Stokasimov E, Chen GY, Su X, Hancock W, Rice LM, Pellman D (2017) A tubulin binding switch underlies Kip3/Kinesin-8 Depolymerase activity. Dev Cell 42:37–51.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atherton J, Jiang K, Stangier MM, Luo Y, Hua S, Houben K, van Hooff JJE, Joseph AP, Scarabelli G, Grant BJ, Roberts AJ, Topf M, Steinmetz MO, Baldus M, Moores CA, Akhmanova A (2017) A structural model for microtubule minus-end recognition and protection by CAMSAP proteins. Nat Struct Mol Biol 24:931–943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atherton J, Stouffer M, Francis F, Moores CA (2018) Microtubule architecture in vitro and in cells revealed by cryo-electron tomography. Acta Crystallogr D Struct Biol 74:572–584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ayhan-Kilcigil G, Tuncbilek M, Altanlar N, Goker H (1999) Synthesis and antimicrobial activity of some new benzimidazole carboxylates and carboxamides. Farmaco 54:562–565

    Article  CAS  PubMed  Google Scholar 

  • Badin-Larçon AC, Boscheron C, Soleilhac JM, Piel M, Mann C, Denarier E, Fourest-Lieuvin A, Lafanechère L, Bornens M, Job D (2004) Suppression of nuclear oscillations in Saccharomyces cerevisiae expressing Glu tubulin. Proc Natl Acad Sci U S A 101:5577–5582

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bahtz R, Seidler J, Arnold M, Haselmann-Weiss U, Antony C, Lehmann WD, Hoffmann I (2012) GCP6 is a substrate of Plk4 and required for centriole duplication. J Cell Sci 125:486–496

    Article  CAS  PubMed  Google Scholar 

  • Bansal Y, Silakari O (2012) The therapeutic journey of benzimidazoles: a review. Bioorg Med Chem 20:6208–6236

    Article  CAS  PubMed  Google Scholar 

  • Banuett F (1995) Genetics of Ustilago maydis, a fungal pathogen that induces tumors in maize. Annu Rev Genet 29:179–208

    Article  CAS  PubMed  Google Scholar 

  • Banuett F, Quintanilla RH, Reynaga-Peña CG (2008) The machinery for cell polarity, cell morphogenesis, and the cytoskeleton in the Basidiomycete fungus Ustilago maydis-a survey of the genome sequence. Fungal Genet Biol 45(Suppl 1):S3–S14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao XX, Spanos C, Kojidani T, Lynch EM, Rappsilber J, Hiraoka Y, Haraguchi T, Sawin KE (2018) Exportin Crm1 is repurposed as a docking protein to generate microtubule organizing centers at the nuclear pore. elife 7:1195

    Article  Google Scholar 

  • Barnes G, Louie KA, Botstein D (1992) Yeast proteins associated with microtubules in vitro and in vivo. Mol Biol Cell 3:29–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett JG, Manning BD, Snyder M (2000) The Kar3p kinesin-related protein forms a novel heterodimeric structure with its associated protein Cik1p. Mol Biol Cell 11:2373–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barton RC, Gull K (1992) Isolation, characterization, and genetic analysis of monosomic, aneuploid mutants of Candida albicans. Mol Microbiol 6:171–177

    Article  CAS  PubMed  Google Scholar 

  • Bassetti M, Righi E, Montravers P, Cornely OA (2018) What has changed in the treatment of invasive candidiasis? A look at the past 10 years and ahead. J Antimicrob Chemother 73:i14–i25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates D, Eastman A (2016) Microtubule destabilizing agents: far more than just anti-mitotic anti-cancer drugs. Br J Clin Pharmacol 83:255–268

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bauer J, Kinast S, Burger-Kentischer A, Finkelmeier D, Kleymann G, Rayyan WA, Schroppel K, Singh A, Jung G, Wiesmuller KH, Rupp S, Eickhoff H (2011) High-throughput-screening-based identification and structure-activity relationship characterization defined (S)-2-(1-aminoisobutyl)-1-(3-chlorobenzyl)benzimidazole as a highly antimycotic agent nontoxic to cell lines. J Med Chem 54:6993–6997

    Article  CAS  PubMed  Google Scholar 

  • Behrens R, Nurse P (2002) Roles of fission yeast tea1p in the localization of polarity factors and in organizing the microtubular cytoskeleton. J Cell Biol 157:783–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bellocq C, Andrey-Tornare I, Paunier Doret AM, Maeder B, Paturle L, Job D, Haiech J, Edelstein SJ (1992) Purification of assembly-competent tubulin from Saccharomyces cerevisiae. Eur J Biochem 210:343–349

    Article  CAS  PubMed  Google Scholar 

  • Bennett RJ, Miller MG, Chua PR, Maxon ME, Johnson AD (2005) Nuclear fusion occurs during mating in Candida albicans and is dependent on the KAR3 gene. Mol Microbiol 55:1046–1059

    Article  CAS  PubMed  Google Scholar 

  • Bergman ZJ, Wong J, Drubin DG, Barnes G (2018) Microtubule dynamics regulation reconstituted in budding yeast lysates. J Cell Sci 132:jcs219386

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Bieling P, Laan L, Schek H, Munteanu EL, Sandblad L, Dogterom M, Brunner D, Surrey T (2007) Reconstitution of a microtubule plus-end tracking system in vitro. Nature 450:1100–1105

    Article  CAS  PubMed  Google Scholar 

  • Bode CJ, Gupta ML, Reiff EA, Suprenant KA, Georg GI, Himes RH (2002) Epothilone and paclitaxel: unexpected differences in promoting the assembly and stabilization of yeast microtubules. Biochemistry 41:3870–3874

    Article  CAS  PubMed  Google Scholar 

  • Bode CJ, Gupta ML, Suprenant KA, Himes RH (2003) The two alpha-tubulin isotypes in budding yeast have opposing effects on microtubule dynamics in vitro. EMBO Rep 4:94–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bond JF, Fridovich-Keil JL, Pillus L, Mulligan RC, Solomon F (1986) A chicken-yeast chimeric beta-tubulin protein is incorporated into mouse microtubules in vivo. Cell 44:461–468

    Article  CAS  PubMed  Google Scholar 

  • Bouissou A, Vérollet C, Sousa A, Sampaio P, Wright M, Sunkel CE, Merdes A, Raynaud-Messina B (2009) {gamma}-Tubulin ring complexes regulate microtubule plus end dynamics. J Cell Biol 187:327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brachat A, Kilmartin JV, Wach A, Philippsen P (1998) Saccharomyces cerevisiae cells with defective spindle pole body outer plaques accomplish nuclear migration via half-bridge-organized microtubules. Mol Biol Cell 9:977–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun M, Drummond DR, Cross RA, McAinsh AD (2009) The kinesin-14 Klp2 organizes microtubules into parallel bundles by an ATP-dependent sorting mechanism. Nat Cell Biol 11:724–730

    Article  CAS  PubMed  Google Scholar 

  • Britto M, Goulet A, Rizvi S, von Loeffelholz O, Moores CA, Cross RA (2016) Schizosaccharomyces pombe kinesin-5 switches direction using a steric blocking mechanism. Proc Natl Acad Sci U S A 113:E7483–E7489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouhard GJ (2015) Dynamic instability 30 years later: complexities in microtubule growth and catastrophe. Mol Biol Cell 26:1207–1210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brouhard GJ, Rice LM (2018) Microtubule dynamics: an interplay of biochemistry and mechanics. Nat Rev Mol Cell Biol 19:451–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Trans Med 4:165rv13

    Article  CAS  Google Scholar 

  • Browning H, Hayles J, Mata J, Aveline L, Nurse P, McIntosh JR (2000) Tea2p is a kinesin-like protein required to generate polarized growth in fission yeast. J Cell Biol 151:15–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Browning H, Hackney DD, Nurse P (2003) Targeted movement of cell end factors in fission yeast. Nat Cell Biol 5:812–818

    Article  CAS  PubMed  Google Scholar 

  • Brunner D, Nurse P (2000) CLIP170-like tip1p spatially organizes microtubular dynamics in fission yeast. Cell 102:695–704

    Article  CAS  PubMed  Google Scholar 

  • Burke D, Gasdaska P, Hartwell L (1989) Dominant effects of tubulin overexpression in Saccharomyces cerevisiae. Mol Cell Biol 9:1049–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch KE, Hayles J, Nurse P, Brunner D (2004) Tea2p kinesin is involved in spatial microtubule organization by transporting tip1p on microtubules. Dev Cell 6:831–843

    Article  CAS  PubMed  Google Scholar 

  • Cabanas R, Castella G, Abarca ML, Bragulat MR, Cabanes FJ (2009) Thiabendazole resistance and mutations in the beta-tubulin gene of Penicillium expansum strains isolated from apples and pears with blue mold decay. FEMS Microbiol Lett 297:189–195

    Article  CAS  PubMed  Google Scholar 

  • Carazo-Salas RE, Antony C, Nurse P (2005) The kinesin Klp2 mediates polarization of interphase microtubules in fission yeast. Science 309:297–300

    Article  CAS  PubMed  Google Scholar 

  • Caron JM, Vega LR, Fleming J, Bishop R, Solomon F (2001) Single site alpha-tubulin mutation affects astral microtubules and nuclear positioning during anaphase in Saccharomyces cerevisiae: possible role for palmitoylation of alpha-tubulin. Mol Biol Cell 12:2672–2687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cavanaugh AM, Jaspersen SL (2017) Big lessons from little yeast: budding and fission yeast centrosome structure, duplication, and function. Annu Rev Genet 51:361–383

    Article  CAS  PubMed  Google Scholar 

  • Chaaban S, Brouhard GJ (2017) A microtubule bestiary: structural diversity in tubulin polymers. Mol Biol Cell 28:2924–2931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chacón MR, Delivani P, Tolić IM (2016) Meiotic nuclear oscillations are necessary to avoid excessive chromosome associations. CellReports 17:1632–1645

    Google Scholar 

  • Chandrika NT, Shrestha SK, Ngo HX, Garneau-Tsodikova S (2016) Synthesis and investigation of novel benzimidazole derivatives as antifungal agents. Bioorg Med Chem 24:3680–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang F, Martin SG (2009) Shaping fission yeast with microtubules. Cold Spring Harb Perspect Biol 1:a001347–a001347

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Zhou MG (2009) Characterization of Fusarium graminearum isolates resistant to both carbendazim and a new fungicide JS399-19. Phytopathology 99:441–446

    Article  CAS  PubMed  Google Scholar 

  • Chen XP, Yin H, Huffaker TC (1998) The yeast spindle pole body component Spc72p interacts with Stu2p and is required for proper microtubule assembly. J Cell Biol 141:1169–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CJ, Yu JJ, Bi CW, Zhang YN, Xu JQ, Wang JX, Zhou MG (2009) Mutations in a beta-tubulin confer resistance of Gibberella zeae to benzimidazole fungicides. Phytopathology 99:1403–1411

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Gao T, Liang S, Liu K, Zhou M, Chen C (2014) Molecular mechanism of resistance of Fusarium fujikuroi to benzimidazole fungicides. FEMS Microbiol Lett 357:77–84

    Article  CAS  PubMed  Google Scholar 

  • Chikashige Y, Ding DQ, Funabiki H, Haraguchi T, Mashiko S, Yanagida M, Hiraoka Y (1994) Telomere-led premeiotic chromosome movement in fission yeast. Science 264:270–273

    Article  CAS  PubMed  Google Scholar 

  • Chiou J-G, Balasubramanian MK, Lew DJ (2017) Cell polarity in yeast. Annu Rev Cell Dev Biol 33:77–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cimolai N, Gill MJ, Church D (1987) Saccharomyces cerevisiae fungemia: case report and review of the literature. Diagn Microbiol Infect Dis 8:113–117

    Article  CAS  PubMed  Google Scholar 

  • Clayton L, Pogson CI, Gull K (1979) Microtubule proteins in the yeast, Saccharomyces cerevisiae. FEBS Lett 106:67–70

    Article  CAS  PubMed  Google Scholar 

  • Clement MJ, Rathinasamy K, Adjadj E, Toma F, Curmi PA, Panda D (2008) Benomyl and colchicine synergistically inhibit cell proliferation and mitosis: evidence of distinct binding sites for these agents in tubulin. Biochemistry 47:13016–13025

    Article  CAS  PubMed  Google Scholar 

  • Corsello SM, Bittker JA, Liu Z, Gould J, McCarren P, Hirschman JE, Johnston SE, Vrcic A, Wong B, Khan M (2017) The drug repurposing hub: a next-generation drug library and information resource. Nat Med 23:405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cota RR, Teixidó-Travesa N, Ezquerra A, Eibes S, Lacasa C, Roig J, Lüders J (2017) MZT1 regulates microtubule nucleation by linking γTuRC assembly to adapter-mediated targeting and activation. J Cell Sci 130:406–419

    Article  CAS  PubMed  Google Scholar 

  • Cross RA (2019) Microtubule lattice plasticity. Curr Opin Cell Biol 56:88–93

    Article  CAS  PubMed  Google Scholar 

  • Cruz MC, Edlind T (1997) Beta-Tubulin genes and the basis for benzimidazole sensitivity of the opportunistic fungus Cryptococcus neoformans. Microbiology 143:2003–2008

    Article  CAS  PubMed  Google Scholar 

  • Cruz MC, Bartlett MS, Edlind TD (1994) In vitro susceptibility of the opportunistic fungus Cryptococcus neoformans to anthelmintic benzimidazoles. Antimicrob Agents Chemother 38:378–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daga RR, Yonetani A, Chang F (2006) Asymmetric microtubule pushing forces in nuclear centering. Curr Biol 16:1544–1550

    Article  CAS  PubMed  Google Scholar 

  • Daly S, Yacoub A, Dundon W, Mastromei G, Islam K, Lorenzetti R (1997) Isolation and characterization of a gene encoding alpha-tubulin from Candida albicans. Gene 187:151–158

    Article  CAS  PubMed  Google Scholar 

  • David M, Gabriel M, Kopecká M (2007) Cytoskeletal structures, ultrastructural characteristics and the capsule of the basidiomycetous yeast Cryptococcus laurentii. Antonie Van Leeuwenhoek 92:29–36

    Article  CAS  PubMed  Google Scholar 

  • Davidse LC (1986) Benzimidazole fungicides: mechanism of action and biological impact. Annu Rev Phytopathol 24:43–65

    Article  CAS  Google Scholar 

  • Davidson RM, Hanson LE (2006) Analysis of b-tubulin gene fragments from Benzimidazole-sensitive and –tolerant Cercospora beticola. J Phytopathol 154:321–328

    Article  CAS  Google Scholar 

  • Davis A, Sage CR, Wilson L, Farrell KW (1993) Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae. Biochemistry 32:8823–8835

    Article  CAS  PubMed  Google Scholar 

  • Davis A, Sage CR, Dougherty CA, Farrell KW (1994) Microtubule dynamics modulated by guanosine triphosphate hydrolysis activity of beta-tubulin. Science 264:839–842

    Article  CAS  PubMed  Google Scholar 

  • Delgehyr N, Lopes CSJ, Moir CA, Huisman SM, Segal M (2008) Dissecting the involvement of formins in Bud6p-mediated cortical capture of microtubules in S. cerevisiae. J Cell Sci 121:3803–3814

    Article  CAS  PubMed  Google Scholar 

  • des Georges A, Katsuki M, Drummond DR, Osei M, Cross RA, Amos LA (2008) Mal3, the Schizosaccharomyces pombe homolog of EB1, changes the microtubule lattice. Nat Struct Mol Biol 15:1102–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devereux M, McCann M, Shea DO, Kelly R, Egan D, Deegan C, Kavanagh K, McKee V, Finn G (2004) Synthesis, antimicrobial activity and chemotherapeutic potential of inorganic derivatives of 2-(4′-thiazolyl)benzimidazole[thiabendazole]: X-ray crystal structures of [Cu(TBZH)2Cl]Cl.H2O.EtOH and TBZH2NO3 (TBZH=thiabendazole). J Inorg Biochem 98:1023–1031

    Article  CAS  PubMed  Google Scholar 

  • Dhani DK, Goult BT, George GM, Rogerson DT, Bitton DA, Miller CJ, Schwabe JWR, Tanaka K (2013) Mzt1/Tam4, a fission yeast MOZART1 homologue, is an essential component of the γ-tubulin complex and directly interacts with GCP3(Alp6). Mol Biol Cell 24:3337–3349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dietrich FS, Voegeli S, Brachat S, Lerch A, Gates K, Steiner S, Mohr C, Pöhlmann R, Luedi P, Choi S, Wing RA, Flavier A, Gaffney TD, Philippsen P (2004) The Ashbya gossypii genome as a tool for mapping the ancient Saccharomyces cerevisiae genome. Science 304:304–307

    Article  CAS  PubMed  Google Scholar 

  • Ding R, McDonald KL, McIntosh JR (1993) Three-dimensional reconstruction and analysis of mitotic spindles from the yeast, Schizosaccharomyces pombe. J Cell Biol 120:141–151

    Article  CAS  PubMed  Google Scholar 

  • Ding R, West RR, Morphew DM, Oakley BR, McIntosh JR (1997) The spindle pole body of Schizosaccharomyces pombe enters and leaves the nuclear envelope as the cell cycle proceeds. Mol Biol Cell 8:1461–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding D-Q, Yamamoto A, Haraguchi T, Hiraoka Y (2004) Dynamics of homologous chromosome pairing during meiotic prophase in fission yeast. Dev Cell 6:329–341

    Article  CAS  PubMed  Google Scholar 

  • Ding Y, Li Y, Li Z, Zhang J, Lu C, Wang H, Shen Y, Du L (2016) Alteramide B is a microtubule antagonist of inhibiting Candida albicans. Biochim Biophys Acta 1860:2097–2106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorleans A, Knossow M, Gigant B (2007) Studying drug-tubulin interactions by X-ray crystallography. Methods Mol Med 137:235–243

    Article  CAS  PubMed  Google Scholar 

  • Dostal V, Libusova L (2014) Microtubule drugs: action, selectivity, and resistance across the kingdoms of life. Protoplasma 251:991–1005

    Article  CAS  PubMed  Google Scholar 

  • Dougherty CA, Himes RH, Wilson L, Farrell KW (1998) Detection of GTP and Pi in wild-type and mutated yeast microtubules: implications for the role of the GTP/GDP-Pi cap in microtubule dynamics. Biochemistry 37:10861–10865

    Article  CAS  PubMed  Google Scholar 

  • Downing KH, Nogales E (2010) Cryoelectron microscopy applications in the study of tubulin structure, microtubule architecture, dynamics and assemblies, and interaction of microtubules with motors. Methods Enzymol 483:121–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drummond DR, Cross RA (2000) Dynamics of interphase microtubules in Schizosaccharomyces pombe. Curr Biol 10:766–775

    Article  CAS  PubMed  Google Scholar 

  • Drummond DR, Kain S, Newcombe A, Hoey C, Katsuki M, Cross RA (2011) Purification of tubulin from the fission yeast Schizosaccharomyces pombe. Methods Mol Biol 777:29–55

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Hnatchuk DJ, Brenner J, Davis D, Allingham JS (2012) Crystal structure of the Kar3-like kinesin motor domain from the filamentous fungus Ashbya gossypii. Proteins 80:1016–1027

    Article  CAS  PubMed  Google Scholar 

  • Duellberg C, Cade NI, Holmes D, Surrey T (2016) The size of the EB cap determines instantaneous microtubule stability. elife 5:e13470

    Article  PubMed  PubMed Central  Google Scholar 

  • Edamatsu M (2014) Bidirectional motility of the fission yeast kinesin-5, Cut7. Biochem Biophys Res Commun 446:231–234

    Article  CAS  PubMed  Google Scholar 

  • Edzuka T, Yamada L, Kanamaru K, Sawada H, Goshima G (2014) Identification of the augmin complex in the filamentous fungus Aspergillus nidulans. PLoS One 9:e101471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Efimov VP, Zhang J, Xiang X (2006) CLIP-170 homologue and NUDE play overlapping roles in NUDF localization in Aspergillus nidulans. Mol Biol Cell 17:2021–2034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egan MJ, McClintock MA, Reck-Peterson SL (2012) Microtubule-based transport in filamentous fungi. Curr Opin Microbiol 15:637–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gohary NS, Shaaban MI (2017) Synthesis, antimicrobial, antiquorum-sensing and antitumor activities of new benzimidazole analogs. Eur J Med Chem 137:439–449

    Article  CAS  PubMed  Google Scholar 

  • Enke C, Zekert N, Veith D, Schaaf C, Konzack S, Fischer R (2007) Aspergillus nidulans Dis1/XMAP215 protein AlpA localizes to spindle pole bodies and microtubule plus ends and contributes to growth directionality. Eukaryot Cell 6:555–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EU Pesticides Database (2019) http://ec.europa.eu/food/plant/pesticides/eu-pesticides-database

  • Farache D, Emorine L, Haren L, Merdes A (2018) Assembly and regulation of γ-tubulin complexes. Open Biol 8:170266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farkasovsky M, Küntzel H (2001) Cortical Num1p interacts with the dynein intermediate chain Pac11p and cytoplasmic microtubules in budding yeast. J Cell Biol 152:251–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fedyanina OS, Book AJ, Grishchuk EL (2009) Tubulin heterodimers remain functional for one cell cycle after the inactivation of tubulin-folding cofactor D in fission yeast cells. Yeast 26:235–247

    Article  CAS  PubMed  Google Scholar 

  • Feierbach B, Verde F, Chang F (2004) Regulation of a formin complex by the microtubule plus end protein tea1p. J Cell Biol 165:697–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fink G, Steinberg G (2006) Dynein-dependent motility of microtubules and nucleation sites supports polarization of the tubulin array in the fungus Ustilago maydis. Mol Biol Cell 17:3242–3253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley KR, Berman J (2005) Microtubules in Candida albicans hyphae drive nuclear dynamics and connect cell cycle progression to morphogenesis. Eukaryot Cell 4:1697–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finley KR, Bouchonville KJ, Quick A, Berman J (2008) Dynein-dependent nuclear dynamics affect morphogenesis in Candida albicans by means of the Bub2p spindle checkpoint. J Cell Sci 121:466–476

    Article  CAS  PubMed  Google Scholar 

  • Fischer R, Timberlake WE (1995) Aspergillus nidulans apsA (anucleate primary sterigmata) encodes a coiled-coil protein required for nuclear positioning and completion of asexual development. J Cell Biol 128:485–498

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Henk DA, Briggs CJ, Brownstein JS, Madoff LC, McCraw SL, Gurr SJ (2012) Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186–194

    Article  CAS  PubMed  Google Scholar 

  • Fisher MC, Hawkins NJ, Sanglard D, Gurr SJ (2018) Worldwide emergence of resistance to antifungal drugs challenges human health and food security. Science 360:739–742

    Article  CAS  PubMed  Google Scholar 

  • Flor-Parra I, Iglesias-Romero AB, Chang F (2018) The XMAP215 Ortholog Alp14 promotes microtubule nucleation in fission Yeast. Curr Biol: CB 28:1681–1691.e4

    Article  PubMed  CAS  Google Scholar 

  • Flory MR, Morphew M, Joseph JD, Means AR, Davis TN (2002) Pcp1p, an Spc110p-related calmodulin target at the centrosome of the fission yeast Schizosaccharomyces pombe. Cell Growth Differ: The Mol Biol J Am Assoc Cancer Res 13:47–58

    CAS  Google Scholar 

  • Fong KK, Zelter A, Graczyk B, Hoyt JM, Riffle M, Johnson R, MacCoss MJ, Davis TN (2018) Novel phosphorylation states of the yeast spindle pole body. Biology open 7:bio033647

    Article  PubMed  PubMed Central  Google Scholar 

  • Foster KE, Burland TG, Gull K (1987) A mutant beta-tubulin confers resistance to the action of benzimidazole-carbamate microtubule inhibitors both in vivo and in vitro. Eur J Biochem 163:449–455

    Article  CAS  PubMed  Google Scholar 

  • Freitag M (2016) The kinetochore interaction network (KIN) of ascomycetes. Mycologia 108:485–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman DB, Sundberg HA, Huang EY, Davis TN (1996) The 110-kD spindle pole body component of Saccharomyces cerevisiae is a phosphoprotein that is modified in a cell cycle-dependent manner. J Cell Biol 132:903–914

    Article  CAS  PubMed  Google Scholar 

  • Friedman DB, Kern JW, Huneycutt BJ, Vinh DB, Crawford DK, Steiner E, Scheiltz D, Yates J, Resing KA, Ahn NG, Winey M, Davis TN (2001) Yeast Mps1p phosphorylates the spindle pole component Spc110p in the N-terminal domain. J Biol Chem 276:17958–17967

    Article  CAS  PubMed  Google Scholar 

  • Fujita A, Vardy L, Garcia MA, Toda T (2002) A fourth component of the fission yeast gamma-tubulin complex, Alp16, is required for cytoplasmic microtubule integrity and becomes indispensable when gamma-tubulin function is compromised. Mol Biol Cell 13:2360–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita I, Yamashita A, Yamamoto M (2015) Dynactin and Num1 cooperate to establish the cortical anchoring of cytoplasmic dynein in S. pombe. J Cell Sci 128:1555–1567

    Article  CAS  PubMed  Google Scholar 

  • Gaba M, Mohan C (2016) Development of drugs based on imidazole and benzimidazole bioactive heterocycles: recent advances and future directions. Med Chem Res 25:173–210

    Article  CAS  Google Scholar 

  • Gandhi SR, Gierliński M, Mino A, Tanaka K, Kitamura E, Clayton L, Tanaka TU (2011) Kinetochore-dependent microtubule rescue ensures their efficient and sustained interactions in early mitosis. Dev Cell 21:920–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner MK, Bouck DC, Paliulis LV, Meehl JB, O’Toole ET, Haase J, Soubry A, Joglekar AP, Winey M, Salmon ED, Bloom K, Odde DJ (2008) Chromosome congression by Kinesin-5 motor-mediated disassembly of longer kinetochore microtubules. Cell 135:894–906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geerts S, Gryseels B (2000) Drug resistance in human helminths: current situation and lessons from livestock. Clin Microbiol Rev 13:207–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gell C, Friel CT, Borgonovo B, Drechsel DN, Hyman AA, Howard J (2011) Purification of tubulin from porcine brain. Methods Mol Biol 777:15–28

    Article  CAS  PubMed  Google Scholar 

  • Gerson-Gurwitz A, Thiede C, Movshovich N, Fridman V, Podolskaya M, Danieli T, Lakämper S, Klopfenstein DR, Schmidt CF, Gheber L (2011) Directionality of individual kinesin-5 Cin8 motors is modulated by loop 8, ionic strength and microtubule geometry. EMBO J 30:4942–4954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geyer EA, Burns A, Lalonde BA, Ye X, Piedra FA, Huffaker TC, Rice LM (2015) A mutation uncouples the tubulin conformational and GTPase cycles, revealing allosteric control of microtubule dynamics. elife 4:e10113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Geymonat M, Segal M (2017) Intrinsic and extrinsic determinants linking spindle pole fate, spindle polarity, and asymmetric cell division in the budding Yeast S. cerevisiae. Results Probl Cell Differ 61:49–82

    Article  CAS  PubMed  Google Scholar 

  • Ghosh PN, Fisher MC, Bates KA (2018) Diagnosing emerging fungal threats: a one health perspective. Front Genet 9:article376

    Article  CAS  Google Scholar 

  • Giannakakou P, Gussio R, Nogales E, Downing KH, Zaharevitz D, Bollbuck B, Poy G, Sackett D, Nicolaou KC, Fojo T (2000) A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci U S A 97:2904–2909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibeaux R, Lang C, Politi AZ, Jaspersen SL, Philippsen P, Antony C (2012) Electron tomography of the microtubule cytoskeleton in multinucleated hyphae of Ashbya gossypii. J Cell Sci 125:5830–5839

    Article  CAS  PubMed  Google Scholar 

  • Gibeaux R, Politi AZ, Nédélec F, Antony C, Knop M (2013) Spindle pole body-anchored Kar3 drives the nucleus along microtubules from another nucleus in preparation for nuclear fusion during yeast karyogamy. Genes Dev 27:335–349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibeaux R, Politi AZ, Philippsen P, Nédélec F (2017) Mechanism of nuclear movements in a multinucleated cell. Mol Biol Cell 28:645–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gladfelter AS, Hungerbuehler AK, Philippsen P (2006) Asynchronous nuclear division cycles in multinucleated cells. J Cell Biol 172:347–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goker H, Tuncbilek M, Ayhan G, Altanlar N (1998) Synthesis of some new benzimidazolecarboxamides and evaluation of their antimicrobial activity. Farmaco 53:415–420

    Article  CAS  PubMed  Google Scholar 

  • Goodson HV, Jonasson EM (2018) Microtubules and microtubule-associated proteins. Cold Spring Harb Perspect Biol 10:a022608

    Article  PubMed  PubMed Central  Google Scholar 

  • Grava S, Keller M, Voegeli S, Seger S, Lang C, Philippsen P (2011) Clustering of nuclei in multinucleated hyphae is prevented by dynein-driven bidirectional nuclear movements and microtubule growth control in Ashbya gossypii. Eukaryot Cell 10:902–915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graziano BR, DuPage AG, Michelot A, Breitsprecher D, Moseley JB, Sagot I, Blanchoin L, Goode BL (2011) Mechanism and cellular function of Bud6 as an actin nucleation-promoting factor. Mol Biol Cell 22:4016–4028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grishchuk EL, McIntosh JR (1999) Sto1p, a fission yeast protein similar to tubulin folding cofactor E, plays an essential role in mitotic microtubule assembly. J Cell Sci 112:1979–1988

    CAS  PubMed  Google Scholar 

  • Gruneberg U, Campbell K, Simpson C, Grindlay J, Schiebel E (2000) Nud1p links astral microtubule organization and the control of exit from mitosis. EMBO J 19:6475–6488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guesdon A, Bazile F, Buey RM, Mohan R, Monier S, Garcia RR, Angevin M, Heichette C, Wieneke R, Tampe R, Duchesne L, Akhmanova A, Steinmetz MO, Chretien D (2016) EB1 interacts with outwardly curved and straight regions of the microtubule lattice. Nat Cell Biol 18:1102–1108

    Article  CAS  PubMed  Google Scholar 

  • Gunzelmann J, Ruthnick D, Lin TC, Zhang W, Neuner A, Jakle U, Schiebel E (2018) The microtubule polymerase Stu2 promotes oligomerization of the gamma-TuSC for cytoplasmic microtubule nucleation. elife 7:934

    Article  Google Scholar 

  • Gupta ML Jr, Bode CJ, Thrower DA, Pearson CG, Suprenant KA, Bloom KS, Himes RH (2002) Beta-tubulin C354 mutations that severely decrease microtubule dynamics do not prevent nuclear migration in yeast. Mol Biol Cell 13:2919–2932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta ML Jr, Bode CJ, Georg GI, Himes RH (2003) Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc Natl Acad Sci U S A 100:6394–6397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta K, Bishop J, Peck A, Brown J, Wilson L, Panda D (2004) Antimitotic antifungal compound benomyl inhibits brain microtubule polymerization and dynamics and cancer cell proliferation at mitosis, by binding to a novel site in tubulin. Biochemistry 43:6645–6655

    Article  CAS  PubMed  Google Scholar 

  • H_örrmansdorfer S, Bauer J (2000) Yeast infections in veterinary medicine. In: Ernst JF, Schmidt A (eds) Dimorphism in human pathogenic and apathogenic yeasts. Karger, Basel

    Google Scholar 

  • Haag C, Steuten B, Feldbrugge M (2015) Membrane-coupled mRNA trafficking in Fungi. Annu Rev Microbiol 69:265–281

    Article  CAS  PubMed  Google Scholar 

  • Hagan IM (1998) The fission yeast microtubule cytoskeleton. J Cell Sci 111:1603–1612

    CAS  PubMed  Google Scholar 

  • Hagan I, Yanagida M (1990) Novel potential mitotic motor protein encoded by the fission yeast cut7+ gene. Nature 347:563–566

    Article  CAS  PubMed  Google Scholar 

  • Han G, Liu B, Zhang J, Zuo W, Morris NR, Xiang X (2001) The Aspergillus cytoplasmic dynein heavy chain and NUDF localize to microtubule ends and affect microtubule dynamics. Curr Biol 11:719–724

    Article  CAS  PubMed  Google Scholar 

  • Han ZJ, Feng YH, Gu BH, Li YM, Chen H (2018) The post-translational modification, SUMOylation, and cancer (review). Int J Oncol 52:1081–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hara M, Fukagawa T (2018) Kinetochore assembly and disassembly during mitotic entry and exit. Curr Opin Cell Biol 52:73–81

    Article  CAS  PubMed  Google Scholar 

  • Haren L, Remy M-H, Bazin I, Callebaut I, Wright M, Merdes A (2006) NEDD1-dependent recruitment of the gamma-tubulin ring complex to the centrosome is necessary for centriole duplication and spindle assembly. J Cell Biol 172:505–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heil-Chapdelaine RA, Oberle JR, Cooper JA (2000) The cortical protein Num1p is essential for dynein-dependent interactions of microtubules with the cortex. J Cell Biol 151:1337–1344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hentrich C, Surrey T (2010) Microtubule organization by the antagonistic mitotic motors kinesin-5 and kinesin-14. J Cell Biol 189:465–480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hepperla AJ, Willey PT, Coombes CE, Schuster BM, Gerami-Nejad M, McClellan M, Mukherjee S, Fox J, Winey M, Odde DJ, O’Toole E, Gardner MK (2014) Minus-end-directed Kinesin-14 motors align antiparallel microtubules to control metaphase spindle length. Dev Cell 31:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiller G, Weber K (1978) Radioimmunoassay for tubulin: a quantitative comparison of the tubulin content of different established tissue culture cells and tissues. Cell 14:795–804

    Article  CAS  PubMed  Google Scholar 

  • Hiraoka Y, Toda T, Yanagida M (1984) The NDA3 gene of fission yeast encodes beta-tubulin: a cold-sensitive nda3 mutation reversibly blocks spindle formation and chromosome movement in mitosis. Cell 39:349–358

    Article  CAS  PubMed  Google Scholar 

  • Hirschi S, Letscher-Bru V, Pottecher J, Lannes B, Jeung MY, Degot T, Santelmo N, Sabou AM, Herbrecht R, Kessler R (2012) Disseminated Trichosporon mycotoxinivorans, Aspergillus fumigatus, and Scedosporium apiospermum coinfection after lung and liver transplantation in a cystic fibrosis patient. J Clin Microbiol 50:4168–4170

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoepfner D, Schaerer F, Brachat A, Wach A, Philippsen P (2002) Reorientation of mispositioned spindles in short astral microtubule mutant spc72Delta is dependent on spindle pole body outer plaque and Kar3 motor protein. Mol Biol Cell 13:1366–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollomon DW (2010) New fungicide modes of action strengthen disease control strategies. Outlooks on Pest Management June:1–5

    Google Scholar 

  • Honda Y, Tsuchiya K, Sumiyoshi E, Haruta N, Sugimoto A (2017) Tubulin isotype substitution revealed that isotype combination modulates microtubule dynamics in C. elegans embryos. J Cell Sci 130:1652–1661

    Article  CAS  PubMed  Google Scholar 

  • Höög JL, Antony C (2007) Whole-cell investigation of microtubule cytoskeleton architecture by electron tomography. Methods Cell Biol 79:145–167

    Article  PubMed  CAS  Google Scholar 

  • Hoog JL, Schwartz C, Noon AT, O’Toole ET, Mastronarde DN, McIntosh JR, Antony C (2007) Organization of interphase microtubules in fission yeast analyzed by electron tomography. Dev Cell 12:349–361

    Article  PubMed  CAS  Google Scholar 

  • Hoog JL, Huisman SM, Sebo-Lemke Z, Sandblad L, McIntosh JR, Antony C, Brunner D (2011) Electron tomography reveals a flared morphology on growing microtubule ends. J Cell Sci 124:693–698

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Horio T, Oakley BR (1994) Human gamma-tubulin functions in fission yeast. J Cell Biol 126:1465–1473

    Article  CAS  PubMed  Google Scholar 

  • Horio T, Oakley BR (2003) Expression of Arabidopsis gamma-tubulin in fission yeast reveals conserved and novel functions of gamma-tubulin. Plant Physiol 133:1926–1934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horio T, Oakley BR (2005) The role of microtubules in rapid hyphal tip growth of Aspergillus nidulans. Mol Biol Cell 16:918–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horio T, Uzawa S, Jung MK, Oakley BR, Tanaka K, Yanagida M (1991) The fission yeast gamma-tubulin is essential for mitosis and is localized at microtubule organizing centers. J Cell Sci 99:693–700

    CAS  PubMed  Google Scholar 

  • Horio T, Kimura N, Basaki A, Tanaka Y, Noguchi T, Akashi T, Tanaka K (2002) Molecular and structural characterization of the spindle pole bodies in the fission yeast Schizosaccharomyces japonicus var japonicus. Yeast 19:1335–1350

    Article  CAS  PubMed  Google Scholar 

  • Howes SC, Geyer EA, LaFrance B, Zhang R, Kellogg EH, Westermann S, Rice LM, Nogales E (2017) Structural differences between yeast and mammalian microtubules revealed by cryo-EM. J Cell Biol 216:2669–2677

    CAS  PubMed  PubMed Central  Google Scholar 

  • Howes SC, Geyer EA, LaFrance B, Zhang R, Kellogg EH, Westermann S, Rice LM, Nogales E (2018) Structural and functional differences between porcine brain and budding yeast microtubules. Cell Cycle 17:278–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huffaker TC, Hoyt MA, Botstein D (1987) Genetic analysis of the yeast cytoskeleton. Annu Rev Genet 21:259–284

    Article  CAS  PubMed  Google Scholar 

  • Huisman SM, Bales OAM, Bertrand M, Smeets MFMA, Reed SI, Segal M (2004) Differential contribution of Bud6p and Kar9p to microtubule capture and spindle orientation in S. cerevisiae. J Cell Biol 167:231–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hussmann F, Drummond DR, Peet DR, Martin DS, Cross RA (2016) Alp7/TACC-Alp14/TOG generates long-lived, fast-growing MTs by an unconventional mechanism. Sci Rep 6:20653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang E, Kusch J, Barral Y, Huffaker TC (2003) Spindle orientation in Saccharomyces cerevisiae depends on the transport of microtubule ends along polarized actin cables. J Cell Biol 161:483–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hyman AA, Salser S, Drechsel DN, Unwin N, Mitchison TJ (1992) Role of GTP hydrolysis in microtubule dynamics: information from a slowly hydrolyzable analogue, GMPCPP. Mol Biol Cell 3:1155–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ilan Y (2018) Microtubules: from understanding their dynamics to using them as potential therapeutic targets. J Cell Physiol 234:7923–7937

    Article  PubMed  CAS  Google Scholar 

  • Ishitsuka Y, Savage N, Li Y, Bergs A, Grün N, Kohler D, Donnelly R, Nienhaus GU, Fischer R, Takeshita N (2015) Superresolution microscopy reveals a dynamic picture of cell polarity maintenance during directional growth. Sci Adv 1:e1500947

    Article  PubMed  PubMed Central  Google Scholar 

  • Izumi N, Fumoto K, Izumi S, Kikuchi A (2008) GSK-3beta regulates proper mitotic spindle formation in cooperation with a component of the gamma-tubulin ring complex, GCP5. J Biol Chem 283:12981–12991

    Article  CAS  PubMed  Google Scholar 

  • Jaeger LH, Carvalho-Costa FA (2017) Status of benzimidazole resistance in intestinal nematode populations of livestock in Brazil: a systematic review. BMC Vet Res 13:358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janeczko M, Kazimierczuk Z, Orzeszko A, Niewiadomy A, Krol E, Szyszka R, Maslyk M (2016) In search of the antimicrobial potential of Benzimidazole derivatives. Pol J Microbiol 65:359–364

    Article  PubMed  Google Scholar 

  • Jang MH, Kim J, Kalme S, Han JW, Yoo HS, Koo BS, Kim SK, Yoon MY (2008) Cloning, purification, and polymerization of Capsicum annuum recombinant alpha and beta tubulin. Biosci Biotechnol Biochem 72:1048–1055

    Article  CAS  PubMed  Google Scholar 

  • Janson ME, Setty TG, Paoletti A, Tran PT (2005) Efficient formation of bipolar microtubule bundles requires microtubule-bound gamma-tubulin complexes. J Cell Biol 169:297–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joffe LS, Schneider R, Lopes W, Azevedo R, Staats CC, Kmetzsch L, Schrank A, Del Poeta M, Vainstein MH, Rodrigues ML (2017) The anti-helminthic compound Mebendazole has multiple antifungal effects against Cryptococcus neoformans. Front Microbiol 8:535

    Article  PubMed  PubMed Central  Google Scholar 

  • Joglekar AP, Bouck D, Finley K, Liu X, Wan Y, Berman J, He X, Salmon ED, Bloom KS (2008) Molecular architecture of the kinetochore-microtubule attachment site is conserved between point and regional centromeres. J Cell Biol 181:587–594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson V, Ayaz P, Huddleston P, Rice LM (2011) Design, overexpression, and purification of polymerization-blocked yeast alphabeta-tubulin mutants. Biochemistry 50:8636–8644

    Article  CAS  PubMed  Google Scholar 

  • Joshi M, Duan D, Drew D, Jia Z, Davis D, Campbell RL, Allingham JS (2013) Kar3Vik1 mechanochemistry is inhibited by mutation or deletion of the C terminus of the Vik1 subunit. J Biol Chem 288:36957–36970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung MK, Oakley BR (1990) Identification of an amino acid substitution in the benA, beta-tubulin gene of Aspergillus nidulans that confers thiabendazole resistance and benomyl supersensitivity. Cell Motil Cytoskeleton 17:87–94

    Article  CAS  PubMed  Google Scholar 

  • Jung MK, Wilder IB, Oakley BR (1992) Amino acid alterations in the benA (beta-tubulin) gene of Aspergillus nidulans that confer benomyl resistance. Cell Motil Cytoskeleton 22:170–174

    Article  CAS  PubMed  Google Scholar 

  • Kaplancikli ZA, Levent S, Osmaniye D, Saglik BN, Cevik UA, Cavusoglu BK, Ozkay Y, Ilgin S (2017) Synthesis and Anticandidal activity evaluation of new Benzimidazole-Thiazole derivatives. Molecules 22:2051

    Article  PubMed Central  CAS  Google Scholar 

  • Kapoor TM, Mayer TU, Coughlin ML, Mitchison TJ (2000) Probing spindle assembly mechanisms with monastrol, a small molecule inhibitor of the mitotic kinesin, Eg5. J Cell Biol 150:975–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki M, Drummond DR, Osei M, Cross RA (2009) Mal3 masks catastrophe events in Schizosaccharomyces pombe microtubules by inhibiting shrinkage and promoting rescue. J Biol Chem 284:29246–29250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsuki M, Drummond DR, Cross RA (2014) Ectopic A-lattice seams destabilize microtubules. Nat Commun 5:3094

    Article  PubMed  CAS  Google Scholar 

  • Katz W, Weinstein B, Solomon F (1990) Regulation of tubulin levels and microtubule assembly in Saccharomyces cerevisiae: consequences of altered tubulin gene copy number. Mol Cell Biol 10:5286–5294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keeling PJ (2003) Congruent evidence from alpha-tubulin and beta-tubulin gene phylogenies for a zygomycete origin of microsporidia. Fungal Genet Biol 38:298–309

    Article  CAS  PubMed  Google Scholar 

  • Kellis M, Birren BW, Lander ES (2004) Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae. Nature 428:617–624

    Article  CAS  PubMed  Google Scholar 

  • Khabnadideh S, Rezaei Z, Pakshir K, Zomorodian K, Ghafari N (2012) Synthesis and antifungal activity of benzimidazole, benzotriazole and aminothiazole derivatives. Res Pharm Sci 7:65–72

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kharazi M, Ahmadi B, Makimur K, Farhang A, Kianipour S, Motamedi M, Mirhendi H (2018) Characterization of beta-tubulin DNA sequences within Candida parapsilosis complex. Curr Med Mycol 4:24–29

    Article  PubMed  PubMed Central  Google Scholar 

  • Khodiyar VK, Maltais LJ, Ruef BJ, Sneddon KM, Smith JR, Shimoyama M, Cabral F, Dumontet C, Dutcher SK, Harvey RJ, Lafanechère L, Murray JM, Nogales E, Piquemal D, Stanchi F, Povey S, Lovering RC (2007) A revised nomenclature for the human and rodent alpha-tubulin gene family. Genomics 90:285–289

    Article  CAS  PubMed  Google Scholar 

  • Kilmartin JV (1981) Purification of yeast tubulin by self-assembly in vitro. Biochemistry 20:3629–3633

    Article  CAS  PubMed  Google Scholar 

  • Kilmartin JV, Goh PY (1996) Spc110p: assembly properties and role in the connection of nuclear microtubules to the yeast spindle pole body. EMBO J 15:4592–4602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klimesova V, Koci J, Pour M, Stachel J, Waisser K, Kaustova J (2002) Synthesis and preliminary evaluation of benzimidazole derivatives as antimicrobial agents. Eur J Med Chem 37:409–418

    Article  CAS  PubMed  Google Scholar 

  • Knop M, Schiebel E (1997) Spc98p and Spc97p of the yeast gamma-tubulin complex mediate binding to the spindle pole body via their interaction with Spc110p. EMBO J 16:6985–6995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knop M, Schiebel E (1998) Receptors determine the cellular localization of a gamma-tubulin complex and thereby the site of microtubule formation. EMBO J 17:3952–3967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenraadt H, Somerville SC, Jones AL (1992) Characterization of mutations in the beta-tubulin gene of benomyl-resistant field strains of Venturia inaequalis and other plant pathogenic fungi. Phytopathology 82:1348–1354

    Article  Google Scholar 

  • Kollman JM, Polka JK, Zelter A, Davis TN, Agard DA (2010) Microtubule nucleating gamma-TuSC assembles structures with 13-fold microtubule-like symmetry. Nature 466:879–882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kollman JM, Greenberg CH, Li S, Moritz M, Zelter A, Fong KK, Fernandez JJ, Sali A, Kilmartin J, Davis TN, Agard DA (2015) Ring closure activates yeast γTuRC for species-specific microtubule nucleation. Nat Struct Mol Biol 22:132–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konzack S, Rischitor PE, Enke C, Fischer R (2005) The role of the kinesin motor KipA in microtubule organization and polarized growth of Aspergillus nidulans. Mol Biol Cell 16:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koo BS, Kalme S, Yeo SH, Lee SJ, Yoon MY (2009) Molecular cloning and biochemical characterization of alpha- and beta-tubulin from potato plants (Solanum tuberosum L.). Plant Physiol Biochem 47:761–768

    Article  CAS  PubMed  Google Scholar 

  • Kopecka M (2016) Microtubules and actin cytoskeleton of Cryptococcus neoformans as targets for anticancer agents to potentiate a novel approach for new antifungals. Chemotherapy 61:117–121

    Article  PubMed  CAS  Google Scholar 

  • Kopecka M, Gabriel M (2009) Microtubules and actin cytoskeleton of potentially pathogenic basidiomycetous yeast as targets for antifungals. Chemotherapy 55:278–286

    Article  CAS  PubMed  Google Scholar 

  • Kopecka M, Gabriel M, Takeo K, Yamaguchi M, Svoboda A, Ohkusu M, Hata K, Yoshida S (2001) Microtubules and actin cytoskeleton in Cryptococcus neoformans compared with ascomycetous budding and fission yeasts. Eur J Cell Biol 80:303–311

    Article  CAS  PubMed  Google Scholar 

  • Kosco KA, Pearson CG, Maddox PS, Wang PJ, Adams IR, Salmon ED, Bloom K, Huffaker TC (2001) Control of microtubule dynamics by Stu2p is essential for spindle orientation and metaphase chromosome alignment in yeast. Mol Biol Cell 12:2870–2880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kowal J, Wyrobisz A, Nosal P, Kucharski M, Kaczor U, Skalska M, Sendor P (2016) Benzimidazole resistance in the ovine Haemonchus contortus from southern Poland - coproscopical and molecular findings. Ann Parasitol 62:119–123

    PubMed  Google Scholar 

  • Kurihara LJ, Beh CT, Latterich M, Schekman R, Rose MD (1994) Nuclear congression and membrane fusion: two distinct events in the yeast karyogamy pathway. J Cell Biol 126:911–923

    Article  CAS  PubMed  Google Scholar 

  • Kurischko C, Swoboda RK (2000) Cytoskeletal proteins and morphogenesis in Candida albicans and Yarrowia lipolytica. In: Ernst JF, Schmidt A (eds) Dimorphism in human pathogenic and apathogenic yeasts. Karger, Basel

    Google Scholar 

  • Lacefield S, Solomon F (2003) A novel step in beta-tubulin folding is important for heterodimer formation in Saccharomyces cerevisiae. Genetics 165:531–541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacefield S, Magendantz M, Solomon F (2006) Consequences of defective tubulin folding on heterodimer levels, mitosis and spindle morphology in Saccharomyces cerevisiae. Genetics 173:635–646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lai J, Koh CH, Tjota M, Pieuchot L, Raman V, Chandrababu KB, Yang D, Wong L, Jedd G (2012) Intrinsically disordered proteins aggregate at fungal cell-to-cell channels and regulate intercellular connectivity. Proc Natl Acad Sci U S A 109:15781–15786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lammers LG, Markus SM (2015) The dynein cortical anchor Num1 activates dynein motility by relieving Pac1/LIS1-mediated inhibition. J Cell Biol 211:309–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang C, Grava S, van den Hoorn T, Trimble R, Philippsen P, Jaspersen SL (2010a) Mobility, microtubule nucleation and structure of microtubule-organizing centers in multinucleated hyphae of Ashbya gossypii. Mol Biol Cell 21:18–28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lang C, Grava S, Finlayson M, Trimble R, Philippsen P, Jaspersen SL (2010b) Structural mutants of the spindle pole body cause distinct alteration of cytoplasmic microtubules and nuclear dynamics in multinucleated hyphae. Mol Biol Cell 21:753–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laryea D, Gullbo J, Isaksson A, Larsson R, Nygren P (2010) Characterization of the cytotoxic properties of the benzimidazole fungicides, benomyl and carbendazim, in human tumour cell lines and primary cultures of patient tumour cells. Anti-Cancer Drugs 21:33–42

    Article  CAS  PubMed  Google Scholar 

  • Leandro-García LJ, Leskelä S, Landa I, Montero-Conde C, López-Jiménez E, Letón R, Cascón A, Robledo M, Rodríguez-Antona C (2010) Tumoral and tissue-specific expression of the major human beta-tubulin isotypes. Cytoskeleton (Hoboken) 67:214–223

    Article  CAS  Google Scholar 

  • Lecland N, Lüders J (2014) The dynamics of microtubule minus ends in the human mitotic spindle. Nat Publ Group 16:770–778

    CAS  Google Scholar 

  • Lee SC, Heitman J (2012) Function of Cryptococcus neoformans KAR7 (SEC66) in karyogamy during unisexual and opposite-sex mating. Eukaryot Cell 11:783–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leroux P, Fritz R, Debieu D, Albertini C, Lanen C, Bach J, Gredt M, Chapeland F (2002) Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Manag Sci 58:876–888

    Article  CAS  PubMed  Google Scholar 

  • Li Z, Nielsen K (2017) Morphology changes in human fungal pathogens upon interaction with the host. J Fungi (Basel) 3:66

    Article  CAS  Google Scholar 

  • Li J, Katiyar SK, Edlind TD (1996) Site-directed mutagenesis of Saccharomyces cerevisiae beta-tubulin: interaction between residue 167 and benzimidazole compounds. FEBS Lett 385:7–10

    Article  CAS  PubMed  Google Scholar 

  • Li CR, Wang Y-M, De Zheng X, Liang HY, Tang JCW, Wang Y (2005) The formin family protein CaBni1p has a role in cell polarity control during both yeast and hyphal growth in Candida albicans. J Cell Sci 118:2637–2648

    Article  CAS  PubMed  Google Scholar 

  • Liakopoulos D, Kusch J, Grava S, Vogel J, Barral Y (2003) Asymmetric loading of Kar9 onto spindle poles and microtubules ensures proper spindle alignment. Cell 112:561–574

    Article  CAS  PubMed  Google Scholar 

  • Lim J, Miller MG (1997) The role of the benomyl metabolite carbendazim in benomyl-induced testicular toxicity. Toxicol Appl Pharmacol 142:401–410

    Article  CAS  PubMed  Google Scholar 

  • Lin TC, Gombos L, Neuner A, Sebastian D, Olsen JV, Hrle A, Benda C, Schiebel E (2011) Phosphorylation of the yeast γ-tubulin Tub4 regulates microtubule function. PLoS One 6:e19700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TC, Neuner A, Schlosser YT, Scharf AN, Weber L, Schiebel E (2014) Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. elife 3:e02208

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C, Schuster M, Guimaraes SC, Ashwin P, Schrader M, Metz J, Hacker C, Gurr SJ, Steinberg G (2016a) Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells. Nat Commun 7:11814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin TC, Neuner A, Flemming D, Liu P, Chinen T, Jakle U, Arkowitz R, Schiebel E (2016b) MOZART1 and gamma-tubulin complex receptors are both required to turn gamma-TuSC into an active microtubule nucleation template. J Cell Biol 215:823–840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Linder S, Schliwa M, Kube-Granderath E (1998) Expression of Reticulomyxa filosa alpha- and beta-tubulins in Escherichia coli yields soluble and partially correctly folded material. Gene 212:87–94

    Article  CAS  PubMed  Google Scholar 

  • Liu K, Pan X, Han Y, Tang F, Yu Y (2012) Estimating the toxicity of the weak base carbendazim to the earthworm (Eisenia fetida) using in situ pore water concentrations in different soils. Sci Total Environ 438:26–32

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Chen X, Jiang J, Hamada MS, Yin Y, Ma Z (2014) Detection and dynamics of different carbendazim-resistance conferring β-tubulin variants of Gibberella zeae collected from infected wheat heads and rice stubble in China. Pest Manag Sci 70:1228–1236

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Yao J, Yin J, Xue J, Zhang H (2018) Recombinant α- and β-tubulin from Echinococcus granulosus: expression, purification and polymerization. Parasite 25:62

    Article  PubMed  PubMed Central  Google Scholar 

  • Lopez-Fanarraga M, Avila J, Guasch A, Coll M, Zabala JC (2001) Review: postchaperonin tubulin folding cofactors and their role in microtubule dynamics. J Struct Biol 135:219–229

    Article  CAS  PubMed  Google Scholar 

  • Lüders J (2018) XMAP215 joins microtubule nucleation team. Nat Publ Group 20:508–510

    Google Scholar 

  • Lüders J, Patel UK, Stearns T (2006) GCP-WD is a gamma-tubulin targeting factor required for centrosomal and chromatin-mediated microtubule nucleation. Nat Cell Biol 8:137–147

    Article  PubMed  CAS  Google Scholar 

  • Ludueña RF (1998) Multiple forms of tubulin: different gene products and covalent modifications. Int Rev Cytol 178:207–275

    Article  PubMed  Google Scholar 

  • Lynch EM, Groocock LM, Borek WE, Sawin KE (2014) Activation of the γ-tubulin complex by the Mto1/2 complex. Curr Biol 24:896–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Michailides TJ (2005) Advances in understanding molecular mechanisms of fungicide resistance and molecular detection of resistant genotypes in phytopathogenic fungi. Crop Prot 24:853–863

    Article  CAS  Google Scholar 

  • MacDonald LM, Armson A, Thompson RC, Reynoldson JA (2001) Expression of Giardia duodenalis beta-tubulin as a soluble protein in Escherichia coli. Protein Expr Purif 22:25–30

    Article  CAS  PubMed  Google Scholar 

  • MacDonald LM, Armson A, Thompson RC, Reynoldson JA (2003) Characterization of factors favoring the expression of soluble protozoan tubulin proteins in Escherichia coli. Protein Expr Purif 29:117–122

    Article  CAS  PubMed  Google Scholar 

  • Maddox PS, Bloom KS, Salmon ED (2000) The polarity and dynamics of microtubule assembly in the budding yeast Saccharomyces cerevisiae. Nat Cell Biol 2:36–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa H, Schiebel E (2004) Cdk1-Clb4 controls the interaction of astral microtubule plus ends with subdomains of the daughter cell cortex. Genes Dev 18:1709–1724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa H, Usui T, Knop M, Schiebel E (2003) Yeast Cdk1 translocates to the plus end of cytoplasmic microtubules to regulate bud cortex interactions. EMBO J 22:438–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maekawa H, Neuner A, Rüthnick D, Schiebel E, Pereira G, Kaneko Y (2017) Polo-like kinase Cdc5 regulates Spc72 recruitment to spindle pole body in the methylotrophic yeast Ogataea polymorpha. elife 6:e24340

    Article  PubMed  PubMed Central  Google Scholar 

  • Majumdar S, Kim T, Chen Z, Munyoki S, Tso SC, Brautigam CA, Rice LM (2018) An isolated CLASP TOG domain suppresses microtubule catastrophe and promotes rescue. Mol Biol Cell 29:1359–1375

    Article  PubMed  PubMed Central  Google Scholar 

  • Manck R, Ishitsuka Y, Herrero S, Takeshita N, Nienhaus GU, Fischer R (2015) Genetic evidence for a microtubule-capture mechanism during polarised growth of Aspergillus nidulans. J Cell Sci 128:3569–3582

    Article  CAS  PubMed  Google Scholar 

  • Manka SW, Moores CA (2018) Microtubule structure by cryo-EM: snapshots of dynamic instability. Essays Biochem 62:737–751

    Article  PubMed  PubMed Central  Google Scholar 

  • Manning BD, Barrett JG, Wallace JA, Granok H, Snyder M (1999) Differential regulation of the Kar3p kinesin-related protein by two associated proteins, Cik1p and Vik1p. J Cell Biol 144:1219–1233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin R, Walther A, Wendland J (2004) Deletion of the dynein heavy-chain gene DYN1 leads to aberrant nuclear positioning and defective hyphal development in Candida albicans. Eukaryot Cell 3:1574–1588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martin SG, McDonald WH, Yates JR, Chang F (2005) Tea4p links microtubule plus ends with the formin for 3p in the establishment of cell polarity. Dev Cell 8:479–491

    Article  CAS  PubMed  Google Scholar 

  • Masuda H, Toda T (2016) Synergistic role of fission yeast Alp16GCP6 and Mzt1MOZART1 in γ-tubulin complex recruitment to mitotic spindle pole bodies and spindle assembly. Mol Biol Cell 27:1753–1763

    Article  PubMed  PubMed Central  Google Scholar 

  • Masuda H, Mori R, Yukawa M, Toda T (2013) Fission yeast MOZART1/Mzt1 is an essential γ-tubulin complex component required for complex recruitment to the microtubule organizing center, but not its assembly. Mol Biol Cell 24:2894–2906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata J, Nurse P (1997) tea1 and the microtubular cytoskeleton are important for generating global spatial order within the fission yeast cell. Cell 89:939–949

    Article  CAS  PubMed  Google Scholar 

  • McCoy KM, Tubman ES, Claas A, Tank D, Clancy SA, O’Toole ET, Berman J, Odde DJ (2015) Physical limits on kinesin-5-mediated chromosome congression in the smallest mitotic spindles. Mol Biol Cell 26:3999–4014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald KL, O’Toole ET, Mastronarde DN, McIntosh JR (1992) Kinetochore microtubules in PTK cells. J Cell Biol 118:369–383

    Article  CAS  PubMed  Google Scholar 

  • McIntosh JR, O’Toole E, Morgan G, Austin J, Ulyanov E, Ataullakhanov F, Gudimchuk N (2018) Microtubules grow by the addition of bent guanosine triphosphate tubulin to the tips of curved protofilaments. J Cell Biol 217:2691–2708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meadows JC, Messin LJ, Kamnev A, Lancaster TC, Balasubramanian MK, Cross RA, Millar JB (2018) Opposing kinesin complexes queue at plus tips to ensure microtubule catastrophe at cell ends. EMBO Rep 19:e46196

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Meluh PB, Rose MD (1990) KAR3, a kinesin-related gene required for yeast nuclear fusion. Cell 60:1029–1041

    Article  CAS  PubMed  Google Scholar 

  • Mieck C, Molodtsov MI, Drzewicka K, van der Vaart B, Litos G, Schmauss G, Vaziri A, Westermann S (2015) Non-catalytic motor domains enable processive movement and functional diversification of the kinesin-14 Kar3. elife 4:1161

    Article  CAS  Google Scholar 

  • Miller RK, Rose MD (1998) Kar9p is a novel cortical protein required for cytoplasmic microtubule orientation in yeast. J Cell Biol 140:377–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller RK, Matheos D, Rose MD (1999) The cortical localization of the microtubule orientation protein, Kar9p, is dependent upon actin and proteins required for polarization. J Cell Biol 144:963–975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minoura I, Hachikubo Y, Yamakita Y, Takazaki H, Ayukawa R, Uchimura S, Muto E (2013) Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett 587:3450–3455

    Article  CAS  PubMed  Google Scholar 

  • Mitchison T, Kirschner M (1984) Dynamic instability of microtubule growth. Nature 312:237–242

    Article  CAS  PubMed  Google Scholar 

  • Mochizuki T (1998) Three-dimensional reconstruction of mitotic cells of Cryptococcus neoformans based on serial section electron microscopy. Jpn J Med Mycol 39:123–127

    Article  CAS  Google Scholar 

  • Moore JK, Cooper JA (2010) Coordinating mitosis with cell polarity: molecular motors at the cell cortex. Semin Cell Dev Biol 21:283–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mori R, Toda T (2013) The dual role of fission yeast Tbc1/cofactor C orchestrates microtubule homeostasis in tubulin folding and acts as a GAP for GTPase Alp41/Arl2. Mol Biol Cell 24:1713–24, S1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moseley JB, Sagot I, Manning AL, Xu Y, Eck MJ, Pellman D, Goode BL (2004) A conserved mechanism for Bni1- and mDia1-induced actin assembly and dual regulation of Bni1 by Bud6 and profilin. Mol Biol Cell 15:896–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mouriño-Pérez RR, Roberson RW, Bartnicki-Garcia S (2006) Microtubule dynamics and organization during hyphal growth and branching in Neurospora crassa. Fungal Genet Biol 43:389–400

    Article  PubMed  CAS  Google Scholar 

  • Mouriño-Pérez RR, Linacre-Rojas LP, Román-Gavilanes AI, Lew TK, Callejas-Negrete OA, Roberson RW, Freitag M (2013) MTB-3, a microtubule plus-end tracking protein (+TIP) of Neurospora crassa. PLoS One 8:e70655

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mouriño-Pérez RR, Riquelme M, Callejas-Negrete OA, Galván-Mendoza JI (2016) Microtubules and associated molecular motors in Neurospora crassa. Mycologia 108:515–527

    Article  PubMed  CAS  Google Scholar 

  • Muller EG, Snydsman BE, Novik I, Hailey DW, Gestaut DR, Niemann CA, O’Toole ET, Giddings TH, Sundin BA, Davis TN (2005) The organization of the core proteins of the yeast spindle pole body. Mol Biol Cell 16:3341–3352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munguia B, Teixeira R, Veroli V, Melian E, Saldana J, Minteguiaga M, Senorale M, Marin M, Dominguez L (2017) Purification of native M. vogae and H. contortus tubulin by TOG affinity chromatography. Exp Parasitol 182:37–44

    Article  CAS  PubMed  Google Scholar 

  • Mustyatsa VV, Boyakhchyan AV, Ataullakhanov FI, Gudimchuk NB (2017) EB-family proteins: functions and microtubule interaction mechanisms. Biochemistry (Mosc) 82:791–802

    Article  CAS  Google Scholar 

  • Neff NF, Thomas JH, Grisafi P, Botstein D (1983) Isolation of the beta-tubulin gene from yeast and demonstration of its essential function in vivo. Cell 33:211–219

    Article  CAS  PubMed  Google Scholar 

  • Nguyen T, Vinh DB, Crawford DK, Davis TN (1998) A genetic analysis of interactions with Spc110p reveals distinct functions of Spc97p and Spc98p, components of the yeast gamma-tubulin complex. Mol Biol Cell 9:2201–2216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niessing D, Jansen RP, Pohlmann T, Feldbrugge M (2018) mRNA transport in fungal top models. Wiley Interdiscip Rev RNA 9:e1453

    Article  CAS  Google Scholar 

  • Nieuwenhuis J, Brummelkamp TR (2018) The tubulin Detyrosination cycle: function and enzymes. Trends Cell Biol 29:80–92

    Article  PubMed  CAS  Google Scholar 

  • Niki H (2014) Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae. Yeast 31:83–90

    Article  CAS  PubMed  Google Scholar 

  • Nixon GL, McEntee L, Johnson A, Farrington N, Whalley S, Livermore J, Natal C, Washbourn G, Bibby J, Berry N, Lestner J, Truong M, Owen A, Lalloo D, Charles I, Hope W (2018) Repurposing and reformulation of the Antiparasitic agent Flubendazole for treatment of Cryptococcal meningoencephalitis, a neglected fungal disease. Antimicrob Agents Chemother 62:e01909–e01917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nogales E (2015) An electron microscopy journey in the study of microtubule structure and dynamics. Protein Sci 24:1912–1919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oakley CE, Oakley BR (1989) Identification of gamma-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338:662–664

    Article  CAS  PubMed  Google Scholar 

  • Oakley BR, Paolillo V, Zheng Y (2015) γ-Tubulin complexes in microtubule nucleation and beyond. Mol Biol Cell 26:2957–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmsted ZT, Riehlman TD, Branca CN, Colliver AG, Cruz LO, Paluh JL (2013) Kinesin-14 Pkl1 targets γ-tubulin for release from the γ-tubulin ring complex (γ-TuRC). Cell Cycle 12:842–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olmsted ZT, Colliver AG, Riehlman TD, Paluh JL (2014) Kinesin-14 and kinesin-5 antagonistically regulate microtubule nucleation by γ-TuRC in yeast and human cells. Nat Commun 5:5339

    Article  CAS  PubMed  Google Scholar 

  • Oren I, Temiz O, Yalcin I, Sener E, Altanlar N (1999) Synthesis and antimicrobial activity of some novel 2,5- and/or 6-substituted benzoxazole and benzimidazole derivatives. Eur J Pharm Sci 7:153–160

    Article  CAS  PubMed  Google Scholar 

  • O’Toole ET, Winey M, McIntosh JR (1999) High-voltage electron tomography of spindle pole bodies and early mitotic spindles in the yeast Saccharomyces cerevisiae. Mol Biol Cell 10:2017–2031

    Article  PubMed  PubMed Central  Google Scholar 

  • Oxberry ME, Geary TG, Winterrowd CA, Prichard RK (2001) Individual expression of recombinant alpha- and beta-tubulin from Haemonchus contortus: polymerization and drug effects. Protein Expr Purif 21:30–39

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir I, Temelli N, Gunal S, Demir S (2010) Gold(I) complexes of N-heterocyclic carbene ligands containing benzimidazole: synthesis and antimicrobial activity. Molecules 15:2203–2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozkay Y, Tunali Y, Karaca H, Isikdag I (2011) Antimicrobial activity of a new series of benzimidazole derivatives. Arch Pharm Res 34:1427–1435

    Article  PubMed  CAS  Google Scholar 

  • Palmer RE, Sullivan DS, Huffaker T, Koshland D (1992) Role of astral microtubules and actin in spindle orientation and migration in the budding yeast, Saccharomyces cerevisiae. J Cell Biol 119:583–593

    Article  CAS  PubMed  Google Scholar 

  • Panse VG, Hardeland U, Werner T, Kuster B, Hurt E (2004) A proteome-wide approach identifies sumoylated substrate proteins in yeast. J Biol Chem 279:41346–41351

    Article  CAS  PubMed  Google Scholar 

  • Parker AL, Teo WS, Pandzic E, Vicente JJ, McCarroll JA, Wordeman L, Kavallaris M (2018) Beta-tubulin carboxy-terminal tails exhibit isotype-specific effects on microtubule dynamics in human gene-edited cells. Life Sci Alliance 1:e201800059

    Article  PubMed  PubMed Central  Google Scholar 

  • Peñalva MA, Zhang J, Xiang X, Pantazopoulou A (2017) Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 28:947–961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pereira G, Knop M, Schiebel E (1998) Spc98p directs the yeast gamma-tubulin complex into the nucleus and is subject to cell cycle-dependent phosphorylation on the nuclear side of the spindle pole body. Mol Biol Cell 9:775–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira G, Grueneberg U, Knop M, Schiebel E (1999) Interaction of the yeast gamma-tubulin complex-binding protein Spc72p with Kar1p is essential for microtubule function during karyogamy. EMBO J 18:4180–4195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettit RK, Woyke T, Pon S, Cichacz ZA, Pettit GR, Herald CL (2005) In vitro and in vivo antifungal activities of the marine sponge constituent spongistatin. Med Mycol 43:453–463

    Article  CAS  PubMed  Google Scholar 

  • Pisano C, Battistoni A, Antoccia A, Degrassi F, Tanzarella C (2000) Changes in microtubule organization after exposure to a benzimidazole derivative in Chinese hamster cells. Mutagenesis 15:507–515

    Article  CAS  PubMed  Google Scholar 

  • Plamann M, Minke PF, Tinsley JH, Bruno KS (1994) Cytoplasmic dynein and actin-related protein Arp1 are required for normal nuclear distribution in filamentous fungi. J Cell Biol 127:139–149

    Article  CAS  PubMed  Google Scholar 

  • Popchock AR, Tseng K-F, Wang P, Karplus PA, Xiang X, Qiu W (2017) The mitotic kinesin-14 KlpA contains a context-dependent directionality switch. Nat Commun 8:13999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruyne D, Legesse-Miller A, Gao L, Dong Y, Bretscher A (2004) Mechanisms of polarized growth and organelle segregation in yeast. Annu Rev Cell Dev Biol 20:559–591

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Huang T, Xu J, Bi C, Chen C, Zhou M (2012) Beta-Tubulins in Gibberella zeae: their characterization and contribution to carbendazim resistance. Pest Manag Sci 68:1191–1198

    Article  CAS  PubMed  Google Scholar 

  • Qiu R, Zhang J, Xiang X (2018) p25 of the dynactin complex plays a dual role in cargo binding and dynactin regulation. J Biol Chem 293:15606–15619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radcliffe PA, Hirata D, Vardy L, Toda T (1999) Functional dissection and hierarchy of tubulin-folding cofactor homologues in fission yeast [In Process Citation]. Mol Biol Cell 10:2987–3001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Radcliffe PA, Garcia MA, Toda T (2000) The cofactor-dependent pathways for alpha- and beta-tubulins in microtubule biogenesis are functionally different in fission yeast. Genetics 156:93–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Richards KL, Anders KR, Nogales E, Schwartz K, Downing KH, Botstein D (2000) Structure-function relationships in yeast tubulins. Mol Biol Cell 11:1887–1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riquelme M, Fischer R, Bartnicki-García S (2003) Apical growth and mitosis are independent processes in Aspergillus nidulans. Protoplasma 222:211–215

    Article  CAS  PubMed  Google Scholar 

  • Riquelme M, Yarden O, Bartnicki-Garcia S, Bowman B, Castro-Longoria E, Free SJ, Fleissner A, Freitag M, Lew RR, Mouriño-Pérez R, Plamann M, Rasmussen C, Richthammer C, Roberson RW, Sanchez-Leon E, Seiler S, Watters MK (2011) Architecture and development of the Neurospora crassa hypha – a model cell for polarized growth. Fungal Biol 115:446–474

    Article  PubMed  Google Scholar 

  • Riquelme M, Aguirre J, Bartnicki-Garcia S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R (2018) Fungal morphogenesis, from the polarized growth of hyphae to complex reproduction and infection structures. Microbiol Mol Biol Rev 82:e00068–e00017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rischitor PE, Konzack S, Fischer R (2004) The Kip3-like kinesin KipB moves along microtubules and determines spindle position during synchronized mitoses in Aspergillus nidulans hyphae. Eukaryot Cell 3:632–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roll-Mecak A (2018) How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Curr Opin Cell Biol 56:102–108

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rombke J, Garcia MV, Scheffczyk A (2007) Effects of the fungicide benomyl on earthworms in laboratory tests under tropical and temperate conditions. Arch Environ Contam Toxicol 53:590–598

    Article  PubMed  CAS  Google Scholar 

  • Roostalu J, Surrey T (2017) Microtubule nucleation: beyond the template. Nat Rev Mol Cell Biol 18:702–710

    Article  CAS  PubMed  Google Scholar 

  • Roostalu J, Hentrich C, Bieling P, Telley IA, Schiebel E, Surrey T (2011) Directional switching of the kinesin Cin8 through motor coupling. Science 332:94–99

    Article  CAS  PubMed  Google Scholar 

  • Roostalu J, Cade NI, Surrey T (2015) Complementary activities of TPX2 and chTOG constitute an efficient importin-regulated microtubule nucleation module. Nat Publ Group 17:1422–1434

    CAS  Google Scholar 

  • Rosenberg JA, Tomlin GC, McDonald WH, Snydsman BE, Muller EG, Yates JR, Gould KL (2006) Ppc89 links multiple proteins, including the septation initiation network, to the core of the fission yeast spindle-pole body. Mol Biol Cell 17:3793–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosselló CA, Lindström L, Eklund G, Corvaisier M, Kristensson MA (2018) γ-Tubulinγ-tubulin interactions as the basis for the formation of a meshwork. Int J Mol Sci 19:3245

    Article  PubMed Central  CAS  Google Scholar 

  • Rout MP, Kilmartin JV (1990) Components of the yeast spindle and spindle pole body. J Cell Biol 111:1913–1927

    Article  CAS  PubMed  Google Scholar 

  • Routh MM, Raut JS, Karuppayil SM (2011) Dual properties of anticancer agents: an exploratory study on the in vitro anti-Candida properties of thirty drugs. Chemotherapy 57:372–380

    Article  CAS  PubMed  Google Scholar 

  • Rüthnick D, Schiebel E (2016) Duplication of the yeast spindle pole body once per cell cycle. Mol Cell Biol 36:1324–1331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sadoul K, Khochbin S (2016) The growing landscape of tubulin acetylation: lysine 40 and many more. Biochem J 473:1859–1868

    Article  CAS  PubMed  Google Scholar 

  • Sage CR, Davis AS, Dougherty CA, Sullivan K, Farrell KW (1995) Beta-Tubulin mutation suppresses microtubule dynamics in vitro and slows mitosis in vivo. Cell Motil Cytoskeleton 30:285–300

    Article  CAS  PubMed  Google Scholar 

  • Sagolla MJ, Uzawa S, Cande WZ (2003) Individual microtubule dynamics contribute to the function of mitotic and cytoplasmic arrays in fission yeast. J Cell Sci 116:4891–4903

    Article  CAS  PubMed  Google Scholar 

  • Saito TT, Okuzaki D, Nojima H (2006) Mcp5, a meiotic cell cortex protein, is required for nuclear movement mediated by dynein and microtubules in fission yeast. J Cell Biol 173:27–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salogiannis J, Reck-Peterson SL (2017) Hitchhiking: a non-canonical mode of microtubule-based transport. Trends Cell Biol 27:141–150

    Article  CAS  PubMed  Google Scholar 

  • Samejima I, Miller VJ, Groocock LM, Sawin KE (2008) Two distinct regions of Mto1 are required for normal microtubule nucleation and efficient association with the gamma-tubulin complex in vivo. J Cell Sci 121:3971–3980

    Article  CAS  PubMed  Google Scholar 

  • Samejima I, Miller VJ, Rincon SA, Sawin KE (2010) Fission yeast Mto1 regulates diversity of cytoplasmic microtubule organizing centers. Curr Biol 20:1959–1965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampson K, Heath IB (2005) The dynamic behaviour of microtubules and their contributions to hyphal tip growth in Aspergillus nidulans. Microbiology 151:1543–1555

    Article  CAS  PubMed  Google Scholar 

  • Sanchez AD, Feldman JL (2016) Microtubule-organizing centers: from the centrosome to non-centrosomal sites. Curr Opin Cell Biol 44:93–101

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanchez-Perez I, Renwick SJ, Crawley K, Karig I, Buck V, Meadows JC, Franco-Sanchez A, Fleig U, Toda T, Millar JBA (2005) The DASH complex and Klp5/Klp6 kinesin coordinate bipolar chromosome attachment in fission yeast. EMBO J 24:2931–2943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saunders WS, Hoyt MA (1992) Kinesin-related proteins required for structural integrity of the mitotic spindle. Cell 70:451–458

    Article  CAS  PubMed  Google Scholar 

  • Sawin KE, Tran PT (2006) Cytoplasmic microtubule organization in fission yeast. Yeast 23:1001–1014

    Article  CAS  PubMed  Google Scholar 

  • Sawin KE, Lourenço PCC, Snaith HA (2004) Microtubule nucleation at non-spindle pole body microtubule-organizing centers requires fission yeast centrosomin-related protein mod20p. Curr Biol 14:763–775

    Article  CAS  PubMed  Google Scholar 

  • Schaerer F, Morgan G, Winey M, Philippsen P (2001) Cnm67p is a spacer protein of the Saccharomyces cerevisiae spindle pole body outer plaque. Mol Biol Cell 12:2519–2533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz PJ, Solomon F, Botstein D (1986a) Genetically essential and nonessential alpha-tubulin genes specify functionally interchangeable proteins. Mol Cell Biol 6:3722–3733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz PJ, Pillus L, Grisafi P, Solomon F, Botstein D (1986b) Two functional alpha-tubulin genes of the yeast Saccharomyces cerevisiae encode divergent proteins. Mol Cell Biol 6:3711–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schatz PJ, Georges GE, Solomon F, Botstein D (1987) Insertions of up to 17 amino acids into a region of alpha-tubulin do not disrupt function in vivo. Mol Cell Biol 7:3799–3805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffler K, Minnes R, Fraisier V, Paoletti A, Tran PT (2015) Microtubule minus end motors kinesin-14 and dynein drive nuclear congression in parallel pathways. J Cell Biol 209:47–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt A (2000) Yeast infections in humans with special emphasis on Malassezia furfur and infections caused by “rare” yeast species. In: Ernst JF, Schmidt A (eds) Dimorphism in human pathogenic and apathogenic yeasts. Karger, Basel, pp 36–53

    Chapter  Google Scholar 

  • Schoch CL, Aist JR, Yoder OC, Gillian Turgeon B (2003) A complete inventory of fungal kinesins in representative filamentous ascomycetes. Fungal Genet Biol 39:1–15

    Article  CAS  PubMed  Google Scholar 

  • Schramm C, Elliott S, Shevchenko A, Schiebel E (2000) The Bbp1p-Mps2p complex connects the SPB to the nuclear envelope and is essential for SPB duplication. EMBO J 19:421–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Kilaru S, Fink G, Collemare J, Roger Y, Steinberg G (2011) Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array. Mol Biol Cell 22:3645–3657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster M, Treitschke S, Kilaru S, Molloy J, Harmer NJ, Steinberg G (2012) Myosin-5, kinesin-1 and myosin-17 cooperate in secretion of fungal chitin synthase. EMBO J 31:214–227

    Article  CAS  PubMed  Google Scholar 

  • Schweiggert J, Stevermann L, Panigada D, Kammerer D, Liakopoulos D (2016) Regulation of a spindle positioning factor at kinetochores by SUMO-targeted ubiquitin ligases. Dev Cell 36:415–427

    Article  CAS  PubMed  Google Scholar 

  • Segal M, Clarke DJ, Maddox P, Salmon ED, Bloom K, Reed SI (2000) Coordinated spindle assembly and orientation requires Clb5p-dependent kinase in budding yeast. J Cell Biol 148:441–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segal M, Bloom K, Reed SI (2002) Kar9p-independent microtubule capture at Bud6p cortical sites primes spindle polarity before bud emergence in Saccharomyces cerevisiae. Mol Biol Cell 13:4141–4155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidel C, Moreno-Velásquez SD, Riquelme M, Fischer R (2013) Neurospora crassa NKIN2, a kinesin-3 motor, transports early endosomes and is required for polarized growth. Eukaryot Cell 12:1020–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shapira O, Goldstein A, Al-Bassam J, Gheber L (2017) A potential physiological role for bi-directional motility and motor clustering of mitotic kinesin-5 Cin8 in yeast mitosis. J Cell Sci 130:725–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw SL, Yeh E, Maddox P, Salmon ED, Bloom K (1997) Astral microtubule dynamics in yeast: a microtubule-based searching mechanism for spindle orientation and nuclear migration into the bud. J Cell Biol 139:985–994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • She Z-Y, Yang W-X (2017) Molecular mechanisms of kinesin-14 motors in spindle assembly and chromosome segregation. J Cell Sci 130:2097–2110

    Article  CAS  PubMed  Google Scholar 

  • Sheeman B, Carvalho P, Sagot I, Geiser J, Kho D, Hoyt MA, Pellman D (2003) Determinants of S. cerevisiae dynein localization and activation: implications for the mechanism of spindle positioning. Curr Biol 13:364–372

    Article  CAS  PubMed  Google Scholar 

  • Shen J, Li T, Niu X, Liu W, Zheng S, Wang J, Wang F, Cao X, Yao X, Zheng F, Fu C (2019) The J-domain co-chaperone Rsp1 interacts with Mto1 to organize non-centrosomal microtubule assembly. Mol Biol Cell 30:256–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva WP, Soares RBA, Jesuino RSA, Izacc SMS, Felipe MSS, Soares CMA (2001) Expression of alpha tubulin during the dimorphic transition of Paracoccidioides brasiliensis. Med Mycol 39:457–462

    Article  CAS  PubMed  Google Scholar 

  • Simanis V (2015) Pombe’s thirteen - control of fission yeast cell division by the septation initiation network. J Cell Sci 128:1465–1474

    Article  CAS  PubMed  Google Scholar 

  • Sipiczki M (2000) Where does fission yeast sit on the tree of life. Genome Biol 1:REVIEWS1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sirajuddin M, Rice LM, Vale RD (2014) Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat Cell Biol 16:335–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith HA, Gorman JW, Koltin Y, Gorman JA (1990) Functional expression of the Candida albicans beta-tubulin gene in Saccharomyces cerevisiae. Gene 90:115–123

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Brady ST (2015) Post-translational modifications of tubulin: pathways to functional diversity of microtubules. Trends Cell Biol 25:125–136

    Article  CAS  PubMed  Google Scholar 

  • Sorour J, Larink O (2001) Toxic effects of benomyl on the ultrastructure during spermatogenesis of the earthworm Eisenia fetida. Ecotoxicol Environ Saf 50:180–188

    Article  CAS  PubMed  Google Scholar 

  • Souès S, Adams IR (1998) SPC72: a spindle pole component required for spindle orientation in the yeast Saccharomyces cerevisiae. J Cell Sci 111:2809–2818

    PubMed  Google Scholar 

  • Spang A, Geissler S, Grein K, Schiebel E (1996) Gamma-Tubulin-like Tub4p of Saccharomyces cerevisiae is associated with the spindle pole body substructures that organize microtubules and is required for mitotic spindle formation. J Cell Biol 134:429–441

    Article  CAS  PubMed  Google Scholar 

  • Sproul LR, Anderson DJ, Mackey AT, Saunders WS, Gilbert SP (2005) Cik1 targets the minus-end kinesin depolymerase kar3 to microtubule plus ends. Curr Biol 15:1420–1427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinberg G, Fuchs U (2004) The role of microtubules in cellular organization and endocytosis in the plant pathogen Ustilago maydis. J Microsc 214:114–123

    Article  CAS  PubMed  Google Scholar 

  • Steinberg G, Schuster M, Theisen U, Kilaru S, Forge A, Martin-Urdiroz M (2012) Motor-driven motility of fungal nuclear pores organizes chromosomes and fosters nucleocytoplasmic transport. J Cell Biol 198:343–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart AJ, Salazar T, Welles EG (2008) Systemic and pulmonary fungal infections. Compendium on Continuing Education for the Practicing Veterinarian Equine Edition 3:260–272

    Google Scholar 

  • Stojkovic M, Zwahlen M, Teggi A, Vutova K, Cretu CM, Virdone R, Nicolaidou P, Cobanoglu N, Junghanss T (2009) Treatment response of cystic echinococcosis to benzimidazoles: a systematic review. PLoS Negl Trop Dis 3:e524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Straube A, Brill M, Oakley BR, Horio T, Steinberg G (2003) Microtubule organization requires cell cycle-dependent nucleation at dispersed cytoplasmic sites: polar and perinuclear microtubule organizing centers in the plant pathogen Ustilago maydis. Mol Biol Cell 14:642–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stringer A, Wright MA (1976) The toxicity of benomyl and some related 2-substituted benzimidazoles to the earthworm Lumbricus terrestris. Pestic Sci 7:459–464

    Article  CAS  Google Scholar 

  • Suelmann R, Sievers N, Fischer R (1997) Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans. Mol Microbiol 25:757–769

    Article  CAS  PubMed  Google Scholar 

  • Syrovatkina V, Tran PT (2015) Loss of kinesin-14 results in aneuploidy via kinesin-5-dependent microtubule protrusions leading to chromosome cut. Nat Commun 6:7322

    Article  CAS  PubMed  Google Scholar 

  • Takeshita N, Higashitsuji Y, Konzack S, Fischer R (2008) Apical sterol-rich membranes are essential for localizing cell end markers that determine growth directionality in the filamentous fungus Aspergillus nidulans. Mol Biol Cell 19:339–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeshita N, Mania D, Herrero S, Ishitsuka Y, Nienhaus GU, Podolski M, Howard J, Fischer R (2013) The cell-end marker TeaA and the microtubule polymerase AlpA contribute to microtubule guidance at the hyphal tip cortex of Aspergillus nidulans to provide polarity maintenance. J Cell Sci 126:5400–5411

    Article  CAS  PubMed  Google Scholar 

  • Takeshita N, Manck R, Grün N, de Vega SH, Fischer R (2014) Interdependence of the actin and the microtubule cytoskeleton during fungal growth. Curr Opin Microbiol 20:34–41

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Kanbe T (1986) Mitosis in the fission yeast Schizosaccharomyces pombe as revealed by freeze-substitution electron microscopy. J Cell Sci 80:253–268

    CAS  PubMed  Google Scholar 

  • Tang X, Punch JJ, Lee W-L (2009) A CAAX motif can compensate for the PH domain of Num1 for cortical dynein attachment. Cell Cycle 8:3182–3190

    Article  CAS  PubMed  Google Scholar 

  • Tatebe H, Shimada K, Uzawa S, Morigasaki S, Shiozaki K (2005) Wsh3/Tea4 is a novel cell-end factor essential for bipolar distribution of Tea1 and protects cell polarity under environmental stress in S. pombe. Curr Biol 15:1006–1015

    Article  CAS  PubMed  Google Scholar 

  • Tay YD, Leda M, Goryachev AB, Sawin KE (2018) Local and global Cdc42 guanine nucleotide exchange factors for fission yeast cell polarity are coordinated by microtubules and the Tea1-Tea4-Pom1 axis. J Cell Sci 131:jcs216580

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ten Hoopen R, Cepeda-García C, Fernández-Arruti R, Juanes MA, Delgehyr N, Segal M (2012) Mechanism for astral microtubule capture by cortical Bud6p priming spindle polarity in S. cerevisiae. Curr Biol 22:1075–1083

    Article  PubMed  CAS  Google Scholar 

  • Thakur J, Sanyal K (2011) The essentiality of the fungus-specific Dam1 complex is correlated with a one-kinetochore-one-microtubule interaction present throughout the cell cycle, independent of the nature of a centromere. Eukaryot Cell 10:1295–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thawani A, Kadzik RS, Petry S (2018) XMAP215 is a microtubule nucleation factor that functions synergistically with the γ-tubulin ring complex. Nat Publ Group 20:575–585

    CAS  Google Scholar 

  • Thomas GE, Renjith MR, Manna TK (2017) Kinetochore-microtubule interactions in chromosome segregation: lessons from yeast and mammalian cells. Biochem J 474:3559–3577

    Article  CAS  PubMed  Google Scholar 

  • Ti SC, Alushin GM, Kapoor TM (2018) Human beta-tubulin isotypes can regulate microtubule protofilament number and stability. Dev Cell 47:175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toda T, Adachi Y, Hiraoka Y, Yanagida M (1984) Identification of the pleiotropic cell division cycle gene NDA2 as one of two different alpha-tubulin genes in Schizosaccharomyces pombe. Cell 37:233–242

    Article  CAS  PubMed  Google Scholar 

  • Tovey CA, Conduit PT (2018) Microtubule nucleation by γ-tubulin complexes and beyond. Essays Biochem 91:EBC20180028

    Google Scholar 

  • Tran PT, Marsh L, Doye V, Inoué S, Chang F (2001) A mechanism for nuclear positioning in fission yeast based on microtubule pushing. J Cell Biol 153:397–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troxell CL, Sweezy MA, West RR, Reed KD, Carson BD, Pidoux AL, Cande WZ, McIntosh JR (2001) pkl1(+)and klp2(+): two kinesins of the Kar3 subfamily in fission yeast perform different functions in both mitosis and meiosis. Mol Biol Cell 12:3476–3488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuncbilek M, Kiper T, Altanlar N (2009) Synthesis and in vitro antimicrobial activity of some novel substituted benzimidazole derivatives having potent activity against MRSA. Eur J Med Chem 44:1024–1033

    Article  CAS  PubMed  Google Scholar 

  • Uchida M, Mouriño-Pérez RR, Freitag M, Bartnicki-Garcia S, Roberson RW (2008) Microtubule dynamics and the role of molecular motors in Neurospora crassa. Fungal Genet Biol 45:683–692

    Article  CAS  PubMed  Google Scholar 

  • Uchimura S, Oguchi Y, Katsuki M, Usui T, Osada H, Nikawa J, Ishiwata S, Muto E (2006) Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin. EMBO J 25:5932–5941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchimura S, Oguchi Y, Hachikubo Y, Ishiwata S, Muto E (2010) Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J 29:1167–1175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uchimura S, Fujii T, Takazaki H, Ayukawa R, Nishikawa Y, Minoura I, Hachikubo Y, Kurisu G, Sutoh K, Kon T, Namba K, Muto E (2015) A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J Cell Biol 208:211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Umesono K, Toda T, Hayashi S, Yanagida M (1983) Cell division cycle genes nda2 and nda3 of the fission yeast Schizosaccharomyces pombe control microtubular organization and sensitivity to anti-mitotic benzimidazole compounds. J Mol Biol 168:271–284

    Article  CAS  PubMed  Google Scholar 

  • Usui T, Maekawa H, Pereira G, Schiebel E (2003) The XMAP215 homologue Stu2 at yeast spindle pole bodies regulates microtubule dynamics and anchorage. EMBO J 22:4779–4793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vela-Corcia D, Romero D, de Vicente A, Perez-Garcia A (2018) Analysis of beta-tubulin-carbendazim interaction reveals that binding site for MBC fungicides does not include residues involved in fungicide resistance. Sci Rep 8:7161

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vemu A, Atherton J, Spector JO, Moores CA, Roll-Mecak A (2017) Tubulin isoform composition tunes microtubule dynamics. Mol Biol Cell 28:3564–3572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatram S, Tasto JJ, Feoktistova A, Jennings JL, Link AJ, Gould KL (2004) Identification and characterization of two novel proteins affecting fission yeast gamma-tubulin complex function. Mol Biol Cell 15:2287–2301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatram S, Jennings JL, Link A, Gould KL (2005) Mto2p, a novel fission yeast protein required for cytoplasmic microtubule organization and anchoring of the cytokinetic actin ring. Mol Biol Cell 16:3052–3063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vogel J, Drapkin B, Oomen J, Beach D, Bloom K, Snyder M (2001) Phosphorylation of gamma-tubulin regulates microtubule organization in budding yeast. Dev Cell 1:621–631

    Article  CAS  PubMed  Google Scholar 

  • von Loeffelholz O, Venables NA, Drummond DR, Katsuki M, Cross R, Moores CA (2017) Nucleotide- and Mal3-dependent changes in fission yeast microtubules suggest a structural plasticity view of dynamics. Nat Commun 8:2110

    Article  CAS  Google Scholar 

  • von Loeffelholz O, Pena A, Drummond DR, Cross R, Moores CA (2019) 4.5Å Cryo-EM structure of yeast Kinesin-5-microtubule complex reveals a distinct binding footprint and mechanism of drug resistance. J Mol Biol 431:864–872

    Article  CAS  Google Scholar 

  • Walker RA, O’Brien ET, Pryer NK, Soboeiro MF, Voter WA, Erickson HP, Salmon ED (1988) Dynamic instability of individual microtubules analyzed by video light microscopy: rate constants and transition frequencies. J Cell Biol 107:1437–1448

    Article  CAS  PubMed  Google Scholar 

  • Wasserstrom L, Lengeler KB, Walther A, Wendland J (2013) Molecular determinants of sporulation in Ashbya gossypii. Genetics 195:87–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wedlich-Söldner R, Straube A, Friedrich MW, Steinberg G (2002) A balance of KIF1A-like kinesin and dynein organizes early endosomes in the fungus Ustilago maydis. EMBO J 21:2946–2957

    Article  PubMed  PubMed Central  Google Scholar 

  • Weinstein B, Solomon F (1990) Phenotypic consequences of tubulin overproduction in Saccharomyces cerevisiae: differences between alpha-tubulin and beta-tubulin. Mol Cell Biol 10:5295–5304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westermann S, Avila-Sakar A, Wang H-W, Niederstrasser H, Wong J, Drubin DG, Nogales E, Barnes G (2005) Formation of a dynamic kinetochore- microtubule interface through assembly of the Dam1 ring complex. Mol Cell 17:277–290

    Article  CAS  PubMed  Google Scholar 

  • Widlund PO, Podolski M, Reber S, Alper J, Storch M, Hyman AA, Howard J, Drechsel DN (2012) One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol Biol Cell 23:4393–4401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winey M, Bloom K (2012) Mitotic spindle form and function. Genetics 190:1197–1224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winey M, Mamay CL, O’Toole ET, Mastronarde DN, Giddings TH, McDonald KL, McIntosh JR (1995) Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle. J Cell Biol 129:1601–1615

    Article  CAS  PubMed  Google Scholar 

  • Wloga D, Joachimiak E, Fabczak H (2017) Tubulin post-translational modifications and microtubule dynamics. Int J Mol Sci 18:2207

    Article  PubMed Central  CAS  Google Scholar 

  • Wohlschlegel JA, Johnson ES, Reed SI, Yates JR (2004) Global analysis of protein sumoylation in Saccharomyces cerevisiae. J Biol Chem 279:45662–45668

    Article  CAS  PubMed  Google Scholar 

  • Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713

    Article  CAS  PubMed  Google Scholar 

  • Wolff J (2009) Plasma membrane tubulin. Biochim Biophys Acta 1788:1415–1433

    Article  CAS  PubMed  Google Scholar 

  • Woodruff JB, Ferreira Gomes B, Widlund PO, Mahamid J, Honigmann A, Hyman AA (2017) The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Woyke T, Pettit GR, Winkelmann G, Pettit RK (2001) In vitro activities and postantifungal effects of the potent dolastatin 10 derivative auristatin PHE. Antimicrob Agents Chemother 45:3580–3584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang X (2018) Nuclear movement in fungi. Semin Cell Dev Biol 82:3–16

    Article  CAS  PubMed  Google Scholar 

  • Xiang X, Fischer R (2004) Nuclear migration and positioning in filamentous fungi. Fungal Genet Biol 41:411–419

    Article  CAS  PubMed  Google Scholar 

  • Xiang X, Beckwith SM, Morris NR (1994) Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci 91:2100–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang X, Roghi C, Morris NR (1995) Characterization and localization of the cytoplasmic dynein heavy chain in Aspergillus nidulans. Proc Natl Acad Sci 92:9890–9894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang X, Han G, Winkelmann DA, Zuo W, Morris NR (2000) Dynamics of cytoplasmic dynein in living cells and the effect of a mutation in the dynactin complex actin-related protein Arp1. Curr Biol 10:603–606

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Oakley BR (2009) In vivo analysis of the functions of gamma-tubulin-complex proteins. J Cell Sci 122:4218–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu D, Jiang B, Ketela T, Lemieux S, Veillette K, Martel N, Davison J, Sillaots S, Trosok S, Bachewich C, Bussey H, Youngman P, Roemer T (2007) Genome-wide fitness test and mechanism-of-action studies of inhibitory compounds in Candida albicans. PLoS Pathog 3:e92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi M, Biswas SK, Suzuki Y, Furukawa H, Sameshima M, Takeo K (2002) The spindle pole body duplicates in early G1 phase in the pathogenic yeast Exophiala dermatitidis: an ultrastructural study. Exp Cell Res 279:71–79

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi M, Biswas SK, Ohkusu M, Takeo K (2009) Dynamics of the spindle pole body of the pathogenic yeast Cryptococcus neoformans examined by freeze-substitution electron microscopy. FEMS Microbiol Lett 296:257–265

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto M (1980) Genetic analysis of resistant mutants to antimitotic benzimidazole compounds in Schizosaccharomyces pombe. Mol Gen Genet 180:231–234

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto A, Hiraoka Y (2003) Cytoplasmic dynein in fungi: insights from nuclear migration. J Cell Sci 116:4501–4512

    Article  CAS  PubMed  Google Scholar 

  • Yamashita A, Yamamoto M (2006) Fission yeast Num1p is a cortical factor anchoring dynein and is essential for the horse-tail nuclear movement during meiotic prophase. Genetics 173:1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanagida M (1987) Yeast tubulin genes. Microbiol Sci 4:115–118

    CAS  PubMed  Google Scholar 

  • Yao X, Zhang J, Zhou H, Wang E, Xiang X (2012) In vivo roles of the basic domain of dynactin p150 in microtubule plus-end tracking and dynein function. Traffic (Copenhagen, Denmark) 13:375–387

    Article  CAS  Google Scholar 

  • Yenjerla M, Cox C, Wilson L, Jordan MA (2009) Carbendazim inhibits cancer cell proliferation by suppressing microtubule dynamics. J Pharmacol Exp Ther 328:390–398

    Article  CAS  PubMed  Google Scholar 

  • Yin H, Pruyne D, Huffaker TC, Bretscher A (2000) Myosin V orientates the mitotic spindle in yeast. Nature 406:1013–1015

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama K, Kaji H, Nishimura K, Miyaji M (1990) The role of microfilaments and microtubules in apical growth and dimorphism of Candida albicans. J Gen Microbiol 136:1067–1075

    Article  CAS  PubMed  Google Scholar 

  • Yoon Y, Oakley BR (1995) Purification and characterization of assembly-competent tubulin from Aspergillus nidulans. Biochemistry 34:6373–6381

    Article  CAS  PubMed  Google Scholar 

  • Yu I, Garnham CP, Roll-Mecak A (2015) Writing and Reading the tubulin code. J Biol Chem 290:17163–17172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zekert N, Fischer R (2009) The Aspergillus nidulans kinesin-3 UncA motor moves vesicles along a subpopulation of microtubules. Mol Biol Cell 20:673–684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zekert N, Veith D, Fischer R (2010) Interaction of the Aspergillus nidulans microtubule-organizing center (MTOC) component ApsB with gamma-tubulin and evidence for a role of a subclass of peroxisomes in the formation of septal MTOCs. Eukaryot Cell 9:795–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Li S, Fischer R, Xiang X (2003) Accumulation of cytoplasmic dynein and dynactin at microtubule plus ends in Aspergillus nidulans is kinesin dependent. Mol Biol Cell 14:1479–1488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Alushin GM, Brown A, Nogales E (2015) Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162:849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gao X, Manck R, Schmid M, Osmani AH, Osmani SA, Takeshita N, Fischer R (2017) Microtubule-organizing centers of Aspergillus nidulans are anchored at septa by a disordered protein. Mol Microbiol 106:285–303

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, LaFrance B, Nogales E (2018) Separating the effects of nucleotide and EB binding on microtubule structure. Proc Natl Acad Sci U S A 115:E6191–E6200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhao Z, Liu H, Luo Y, Zhou S, An L, Wang C, Jin Q, Zhou M, Xu J-R (2014) Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life. Sci Rep 4:6746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuelke KA, Perreault SD (1995) Carbendazim (MBC) disrupts oocyte spindle function and induces aneuploidy in hamsters exposed during fertilization (meiosis II). Mol Reprod Dev 42:200–209

    Article  CAS  PubMed  Google Scholar 

  • Zwetsloot AJ, Tut G, Straube A (2018) Measuring microtubule dynamics. Essays Biochem 62(6):725–735

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr. A. Neuner and Dr. M. Yamaguchi for providing electron micrographs.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hiromi Maekawa or Douglas R. Drummond .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maekawa, H., Drummond, D.R. (2019). Microtubules in Non-conventional Yeasts. In: Sibirny, A. (eds) Non-conventional Yeasts: from Basic Research to Application. Springer, Cham. https://doi.org/10.1007/978-3-030-21110-3_8

Download citation

Publish with us

Policies and ethics