Non-conventional Yeasts for Producing Alternative Beers

  • Ciro Sannino
  • Ambra Mezzasoma
  • Pietro Buzzini
  • Benedetta TurchettiEmail author


Since immemorial time beer is the product of wort fermentation catalyzed by the cells of two main yeast species, namely, Saccharomyces cerevisiae and Saccharomyces pastorianus, with hop addition. However, in recent years the beer market changed completely and novel types of beers, such as low-alcohol and low-calorie beers and spontaneously fermented or flavored beers, have become very popular. These different beers vary for the nature and amounts of water, cereals, hops, and other additives, techniques used for production, storage, and consumption, and also yeasts used as starter. Indeed, some non-conventional yeasts have been recently proposed as starter cultures for brewing.

This chapter provides a comprehensive review of the most recent papers describing yeast species diversity used in brewing industry or found in spontaneous fermented beers. Many species were described for their fermentative aptitude as a single or co-starter, either at lab or pilot scale and, rarely, at the industrial scale. Ascomycetous species are generally used but a member of Basidiomycota (Mrakia sp.) was also considered. A particular focus in the chapter is dedicated to flavor production and to spontaneous fermentation.


Non-conventional yeasts Brewing Low-alcohol beer Spontaneous fermentation Bioflavoring 


  1. Adams S, Taylor AJ (2012) Oral processing and flavour sensing mechanisms. In: Chen J, Engelen L (eds) Food oral processing: fundamentals of eating and sensory perception. Blackwell Publishing Ltd, Oxford, pp 177–202CrossRefGoogle Scholar
  2. Allouse-Boraud WAM, N’Guessan FK, Djeni TND et al (2015) Fermentation profile of Saccharomyces cerevisiae and Candida tropicalis as starter cultures on barley malt medium. J Food Sci Technol 8:5236–5242CrossRefGoogle Scholar
  3. Anfang N, Brajkovich M, Goddard M (2009) Co-fermentation with Pichia kluyveri increases varietal thiol concentrations in Sauvignon Blanc. Aust J Grape Wine Res 15:1–8CrossRefGoogle Scholar
  4. Aquilani B, Laureti T, Poponi S, Secondi L (2015) Beer choice and consumption determinants when craft beers are tasted: an exploratory study of consumer preferences. Food Qual Prefer 41:214–224CrossRefGoogle Scholar
  5. Attchelouwa KC, Aka-Gbézo S, N’guessan FK et al (2017) Biochemical and microbiological changes during the Ivorian sorghum beer deterioration at different storage temperatures. Beverages.
  6. Barbosa Piló F, Carvajal-Barriga EJ, Guamán-Burneo MC et al (2018) Saccharomyces cerevisiae populations and other yeasts associated with indigenous beers (chicha) of Ecuador. Braz J Microbiol 49:808–815CrossRefGoogle Scholar
  7. Basso RF, Alcarde AR, Portugal CB (2016) Could non-Saccharomyces yeasts contribute on innovative brewing fermentations? Food Res Int 86:112–120CrossRefGoogle Scholar
  8. Belda I, Ruiz J, Beisert B et al (2017) Influence of Torulaspora delbrueckii in varietal thiol (3-SH and 4-MSP) release in wine sequential fermentations. Int J Food Microbiol 257:183–191CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bellut K, Michel M, Zarnkow M et al (2018) Application of non-Saccharomyces yeasts isolated from Kombucha in the production of alcohol-free beer. Fermentation 4(3):66CrossRefGoogle Scholar
  10. Benito S (2018) The impact of Torulaspora delbrueckii yeast in winemaking. Appl Microbiol Biotechnol 102:3081–3094CrossRefPubMedPubMedCentralGoogle Scholar
  11. Berlowska J, Kregiel D, Rajkowska K (2015) Biodiversity of brewery yeast strains and their fermentative activities. Yeast 32(1):289–300PubMedGoogle Scholar
  12. Bizaj E, Cordente AG, Bellon JR et al (2012) A breeding strategy to harness flavor diversity of Saccharomyces interspecific hybrids and minimize hydrogen sulfide production. FEMS Yeast Res 12:456–465PubMedCrossRefGoogle Scholar
  13. Blomqvist J, Eberhard T, Schnürer J et al (2010) Fermentation characteristics of Dekkera bruxellensis strains. Appl Microbiol Biotechnol 87:1487–1497PubMedCrossRefGoogle Scholar
  14. Boekhout T (2005) Gut feeling for yeasts. Nature 434(7032):449–451PubMedCrossRefGoogle Scholar
  15. Bokulich NA, Bamforth CW, Mills DA (2012) Brewhouse-resident microbiota are responsible for multi-stage fermentation of American Coolship Ale. PLoS One 7(4):e35507PubMedPubMedCentralCrossRefGoogle Scholar
  16. Brányik T, Vicente AA, Dostálek P et al (2008) A review of flavour formation in continuous beer fermentation. J Inst Brew 114(1):3–13CrossRefGoogle Scholar
  17. Buzzini P, Vaughan-Martini A (2006) Yeast biodiversity and biotechnology. In: Rosa CA, Peter G (eds) Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 533–559CrossRefGoogle Scholar
  18. Caluwaerts HJJ (1995) Process for the manufacture of an alcohol free beer having the organoleptic properties of a lager type pale beer. US Pat 5(384):135Google Scholar
  19. Canonico L, Agarbati A, Comitini F et al (2016) Torulaspora delbrueckii in the brewing process: a new approach to enhance bioflavour and to reduce ethanol content. Food Microbiol 56:45–51PubMedCrossRefGoogle Scholar
  20. Canonico L, Comitini F, Ciani M (2017) Torulaspora delbrueckii contribution in mixed brewing fermentations with different Saccharomyces cerevisiae strains. Int J Food Microbiol 259:7–13PubMedPubMedCentralGoogle Scholar
  21. Cao X, Hou L, Lu M et al (2010) Genome shuffling of Zygosaccharomyces rouxii to accelerate and enhance the flavor formation of soy sauce. J Sci Food Agric 90:281–285PubMedCrossRefGoogle Scholar
  22. Capece A, Romaniello R, Siesto G et al (2018a) Conventional and non-conventional yeasts in beer production. Fermentation. Scholar
  23. Capece A, Romaniello R, Pietrafesa A et al (2018b) Use of Saccharomyces cerevisiae var. boulardii in co-fermentations with S. cerevisiae for the production of craft beers with potential healthy value-added. Int J Food Microbiol 284:22–30PubMedCrossRefGoogle Scholar
  24. Carlquist M, Gibson B, Yuceer YK et al (2015) Process engineering for bioflavour production with metabolically active yeasts – a mini-review. Yeast 32(1):123–143PubMedGoogle Scholar
  25. Chevassus-Agnès S, Favier JC, Joseph A (1976) Technologie traditionnelle et valeur nutritive des “bières” de sorgho du Cameroun Cahiers de. Nutrition et de Diététique 11(2):89–104Google Scholar
  26. Ciani M, Comitini F (2011) Non-Saccharomyces wine yeasts have a promising role in biotechnological approaches to winemaking. Ann Microbiol 61(1):25–32CrossRefGoogle Scholar
  27. Ciani M, Maccarelli F (1998) Oenological properties of non-Saccharomyces yeasts associated with winemaking. World J Microbiol Biotechnol 14:199–203CrossRefGoogle Scholar
  28. Crauwels S, Steensels S, Aerts G et al (2015) Brettanomyces bruxellensis, essential contributor in spontaneous beer fermentations providing novel opportunities for the brewing industry. Brew Sci 68:110–121Google Scholar
  29. Daenen L, Sterckx F, Delvaux FR et al (2008) Evaluation of the glycoside hydrolase activity of a Brettanomyces strain on glycosides from sour cherry (Prunus Cerasus L.) used in the production of special fruit beers. FEMS Yeast Res 8:1103–1114PubMedCrossRefGoogle Scholar
  30. De Francesco G, Turchetti B, Sileoni V et al (2015) Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J Inst Brew 121:113–121CrossRefGoogle Scholar
  31. De Francesco G, Sannino C, Sileoni V et al (2018) Mrakia gelida in brewing process: an innovative production of low alcohol beer using a psychrophilic yeast strain. Food Microbiol 76:354–362PubMedCrossRefGoogle Scholar
  32. De Roos J, Vandamme P, De Vuyst L (2018) Wort substrate consumption and metabolite production during lambic beer fermentation and maturation explain the successive growth of specific bacterial and yeast species. Front Microbiol 9:1–20CrossRefGoogle Scholar
  33. Djè KM, Aka S, Zinzendorf NY et al (2009) Predominant lactic acid bacteria involved in the spontaneous fermentation step of tchapalo process, a traditional sorghum beer of Côte d’Ivoire. Res J Biol Sci 4(7):789–795Google Scholar
  34. Domizio P, House JF, Joseph CML et al (2016) Lachancea thermotolerans as an alternative yeast for the production of beer. J Inst Brew 122:599–604CrossRefGoogle Scholar
  35. Dunn B, Sherlock G (2008) Reconstruction of the genome origins and evolution of the hybrid lager yeast Saccharomyces pastorianus. Genome Res 18:1610–1623PubMedPubMedCentralCrossRefGoogle Scholar
  36. Eizaguirre JI, Peris D, Rodríguez ME et al (2018) Phylogeography of the wild Lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environ Microbiol 20(10):3732–3743PubMedCrossRefGoogle Scholar
  37. Estela-Escalante WDS, Rosales-Mendoza M, Moscosa-Santillán JE et al (2016) Evaluation of the fermentative potential of Candida zemplinina yeasts for craft beer fermentation. J Inst Brew 122:530–535CrossRefGoogle Scholar
  38. Etschmann M, Huth I, Walisko R et al (2015) Improving 2-phenylethanol and 6-pentyl-α-pyrone production with fungi by microparticle-enhanced cultivation (MPEC). Yeast 32:145–157PubMedGoogle Scholar
  39. Fleet GH (2006) The commercial and community significance of yeasts in food and beverage production. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 1–12Google Scholar
  40. Gamero A, Quintilla R, Groenewald M et al (2016) High-throughput screening of a large collection of non-conventional yeasts reveals their potential for aroma formation in food fermentation. Food Microbiol 60:147–159PubMedCrossRefPubMedCentralGoogle Scholar
  41. Gibson BR (2011) 125th anniversary review: improvement of higher gravity brewery fermentation via wort enrichment and supplementation. J Inst Brew 117:268–284CrossRefGoogle Scholar
  42. Gibson B, Liti G (2015) Saccharomyces pastorianus: genomic insights inspiring innovation for industry. Yeast 32:17–27PubMedPubMedCentralGoogle Scholar
  43. Gibson B, Geertman A, Hittinger CT et al (2017) New yeasts—new brews: modern approaches to brewing yeast design and development FEMS yeast research, vol 17, p fox038Google Scholar
  44. Gonçalves M, Pontes A, Almeida P et al (2016) Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr Biol 26:2750–2761PubMedCrossRefGoogle Scholar
  45. Gonzalez SS, Barrio E, Querol A (2008) Molecular characterization of new natural hybrids of Saccharomyces cerevisiae and S. kudriavzevii in brewing. Appl Environ Microbiol 74(8):2314–2320PubMedPubMedCentralCrossRefGoogle Scholar
  46. González R, Quirós M, Morales P (2013) Yeast respiration of sugars by non-Saccharomyces yeast species: a promising and barely explored approach to lowering alcohol content of wines. Trends Food Sci Tech 29(1):55–61CrossRefGoogle Scholar
  47. Goretti M, Turchetti B, Cramarossa MR et al (2013) Production of flavours and fragrances via bioreduction of (4R)-(−)-carvone and (1R)-(−)-myrtenal by non-conventional yeast whole-cells. Molecules 18:5736–5748PubMedPubMedCentralCrossRefGoogle Scholar
  48. Gschaedler A (2017) Contribution of non-conventional yeasts in alcoholic beverages. Curr Opin Food Sci 13:73–77CrossRefGoogle Scholar
  49. Gutiérrez A, Boekhout T, Gojkovic Z, Katz M (2018) Evaluation of non- yeasts in the fermentation of wine, beer and cider for the development of new beverages. J Inst Brew 124(4):389–402Google Scholar
  50. Haehn H, Glaubitz M (1933) Beer manufacture, patent US1898047 AGoogle Scholar
  51. Hallsworth JE (1998) Ethanol-induced water stress in yeast. J Ferment Bioeng 85:125–137CrossRefGoogle Scholar
  52. Holt S, Mukherjee V, Lievens B et al (2017) Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol 72:55–66PubMedCrossRefPubMedCentralGoogle Scholar
  53. Holt S, Mukherjee V, Lievens B, Verstrepen KJ, Thevelein JM (2018) Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol 72:55–66PubMedPubMedCentralCrossRefGoogle Scholar
  54. Huige NG, Sanchez GW, Leidig AR (1990) Process for preparing a nonalcoholic (less than 0.5 volume percent alcohol) malt beverage, Patent US4970082 AGoogle Scholar
  55. Johnson E (2013) Biotechnology of non-Saccharomyces yeasts—the ascomycetes. Appl Microbiol Biotechnol 97(2):503–517PubMedCrossRefPubMedCentralGoogle Scholar
  56. Jolly N, Varela C, Pretorius I (2014) Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered. FEMS Yeast Res 14:215–237CrossRefGoogle Scholar
  57. Kastner JR, Ahmad M, Jones WJ et al (1992) Viability of Candida shehatae in D-xylose fermentations with added ethanol. Biotechnol Bioeng 40:1282–1285PubMedCrossRefPubMedCentralGoogle Scholar
  58. Kastner JR, Roberts RS, Jones WJ (1996) Effect of pH on cellviability and product yields in d-xylose fermentations by Candida shehatae. Appl Microbiol Biotechnol 45:224–228CrossRefGoogle Scholar
  59. King A, Richard Dickinson J (2000) Biotransformation of monoterpene alcohols by Saccharomyces cerevisiae, Torulaspora delbrueckii and Kluyveromyces lactis. Yeast 16:499–506PubMedCrossRefPubMedCentralGoogle Scholar
  60. Krogerus K, Arvas M, De Chiara M et al (2016) Ploidy influences the functional attributes of de novo lager yeast hybrids. Appl Microbiol Biot 100:7203–7222CrossRefGoogle Scholar
  61. Kurtzman CP (2011) Wickerhamomyces. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts a taxonomic study. Elsevier, Oxford, pp 899–917CrossRefGoogle Scholar
  62. Kurtzman C, Fell J, Boekhout T (2011) The yeasts a taxonomy study. Elsevier, AmsterdamGoogle Scholar
  63. Lachance MA, Boekhout T, Scorzetti G et al (2011) Candida. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study. Elsevier, Oxford, pp 987–1277CrossRefGoogle Scholar
  64. Lee KE, Lee SM, Choi YH et al (2013) Comparative volatile profiles in soy sauce according to inoculated microorganisms. Biosci Biotechnol Biochem 77:2192–2200PubMedCrossRefGoogle Scholar
  65. Lentz M, Putzke T, Hessler R et al (2014) Genetic and physiological characterization of yeast isolated from ripe fruit and analysis of fermentation and brewing potential. J Inst Brew 120:559–564Google Scholar
  66. Li H, Liu Y, Zhang W (2013) Method for Manufacturing Alcohol-Free Beer through Candida shehatae. China Patent CN102220198
  67. Libkind D, Hittinger CT, Valerio E et al (2011) Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc Natl Acad Sci U S A 108:14539–14544PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu SQ, Quek AY (2016) Evaluation of beer fermentation with a novel yeast Williopsis saturnus. Food Technol Biotechnol 54(4):403–412PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liu Y, Li H, Du JH (2011) Non-alcoholic beer production by Saccharomycodes ludwigii. Food Sci 15:186–190Google Scholar
  70. Lytra G, Tempere S, Le Floch A et al (2013) Study of sensory interactions among red wine fruity esters in a model solution. J Agric Food Chem 61:8504–8513PubMedCrossRefGoogle Scholar
  71. Lyumugabe F, Gros J, Nzungize J et al (2012) Characteristics of African traditional beers brewed with Sorghum Malt: a review. Biotechnol Agron Soc Environ 16(4):509–530Google Scholar
  72. Magalhǎes F, Krogerus K, Vidgren V et al (2017) Improved cider fermentation performance and quality with newly-generated Saccharomyces cerevisiae × Saccharomyces eubayanus hybrids. J Ind Microbiol Biot 44(8):1203–1213CrossRefGoogle Scholar
  73. Meier-Dörnberg T, Schneiderbanger H, Jacob F et al (2014) Alcohol-free wheat beer with maltose negative yeast strain Saccharomycodes ludwigii, in 3rd Young Scientists Symposium, Poster no. P.3.5. Available from:
  74. Mendoza LM, Neef A, Vignolo G, Belloch C (2017) Yeast diversity during the fermentation of Andean chicha: a comparison of high-throughput sequencing and culture dependent approaches. Food Microbiol 67:1–10PubMedCrossRefGoogle Scholar
  75. Mertens S, Steensels J, Saels V et al (2015) A large set of newly created interspecific Saccharomyces hybrids increases aromatic diversity in lager beers. Appl Environ Microbiol 81:8202–8214PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mets MD, Verzele M (1968) The aroma of hops I. origin and identification of hop aroma substances. J Inst Brew 74:74–81CrossRefGoogle Scholar
  77. Michel M, Meier-Dörnberg T, Jacob F et al (2016a) Review: pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J Inst Brew 122:569–587CrossRefGoogle Scholar
  78. Michel M, Kopecká J, Meier-Dörnberg T et al (2016b) Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 33:129–144PubMedCrossRefGoogle Scholar
  79. Mohammadi A, Razavi SH, Mousavi SM et al (2011) A comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces cerevisiae, Saccharomyces ludwigii and Saccharomyces rouxii on brewer’s spent grain. Braz J Microbiol 42:605–615PubMedPubMedCentralCrossRefGoogle Scholar
  80. Montanari L, Marconi O, Mayer H et al (2011) Production of alcohol-free beer. In: Preedy VR (ed) Beer in health and disease prevention. Elsevier, New York, pp 61–75Google Scholar
  81. Moran GP, Sullivan DJ, Coleman DC (2002) Emergence of non-Candida albicans Candida species as pathogens in: Calderone RA (Ed) Candida and Candidiasis ASM press, Washington, DC, pp 37–53Google Scholar
  82. Morris C (1974) Reconstructing patterns of non-agricultural production in the Inca economy: archaeology and documents in institutional analysis. In: Moore CB (ed) Reconstructing complex societies. Supplement to American Schools of Oriental Research Bulletin No. 20, Cambridge, pp 49–60Google Scholar
  83. Mortazavian A, Razavi S, Mousavi S et al (2014) The effect of Saccharomyces strain and fermentation conditions on quality parameters of non-alcoholic beer. J Paramed Sci 5:21–26Google Scholar
  84. Müller-Auffermann K, Caldera A, Jacob F et al (2015) Characterization of different bottom fermenting Saccharomyces pastorianus brewing yeast strains. Brew Sci 68:46–57Google Scholar
  85. Munroe JH (1995) Fermentation In: Dekker M, Hardwick W A (Eds) Handbook of Brewing CRC Press, New York, p 323–353Google Scholar
  86. N’Guessan FK, N’Dri DY, Camara F et al (2010) Saccharomyces cerevisiae and Candida tropicalis as starter cultures for the alcoholic fermentation of tchapalo, a traditional sorghum beer. World J Microbiol Biotechnol 26:693–699CrossRefGoogle Scholar
  87. N’guessan KF, Brou K, Noe’mie J et al (2011) Identification of yeasts during alcoholic fermentation of tchapalo, a traditional sorghum beer of Côte d’Ivoire. A Van Leeuw J 99:855–864CrossRefGoogle Scholar
  88. Narziss L, Miedaner H, Kern E et al (1992) Technology and composition of non-alcoholic beers. Brauwelt Int 4:396–410Google Scholar
  89. Nelson M (2014) The geography of beer. Springer, New York, p 9CrossRefGoogle Scholar
  90. Olaniran AO, Maharaj YR, Pillay B (2011) Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density. Electro J Biotech 14Google Scholar
  91. Olaniran AO, Hiralal L, Mokoena MP, Pillay B (2017) Flavour-active volatile compounds in beer: production, regulation and control. J Inst Brew 123(1):13–23CrossRefGoogle Scholar
  92. Park JY, Lee JY, Choi SH, Ko HM, Kim IC, Lee HB, Bai S (2014) Construction of dextrin and isomaltose-assimilating brewer’s yeasts for production of low-carbohydrate beer. Biotechnol Lett 36(8):1693–1699PubMedCrossRefGoogle Scholar
  93. Passoth V, Fredlund E, Druvefors UÄ et al (2006) Biotechnology, physiology and genetics of the yeast Pichia anomala. FEMS Yeast Res 6(1):3–13PubMedCrossRefGoogle Scholar
  94. Petruzzi L, Corbo MR, Mn S et al (2016) Brewer’s yeast in controlled and uncontrolled fermentations, with a focus on novel, nonconventional, and superior strains. Food Rev Int 32(4):341–363CrossRefGoogle Scholar
  95. Pires EJ, Teixeira JA, Brányik T et al (2014) Yeast: the soul of beer’s aroma and a review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl Microbiol Biotechnol 98:1937–1949PubMedCrossRefGoogle Scholar
  96. Polycarpe Kayodé AP, Hounhouigan DJ, Nout MJR et al (2007) Household production of sorghum beer in Benin: technological and socio-economic aspects. Int J Consum Stud 31:258–264CrossRefGoogle Scholar
  97. Ramos-Jeunehomme C, Laub R, Masschelein CA (1991) Why is ester formation in brewery fermentations yeast strain dependent? In: 23rd European brewery convention congress. Oxford University, Lisbon, pp 257–264Google Scholar
  98. Ravasio D, Carlin S, Boekhout T, Groenewald M et al (2018) Adding flavor to beverages with non-conventional yeasts. Fermentation 4:15. Scholar
  99. Rodhouse L, Carbonero F (2017) Overview of craft brewing specificities and potentially associated microbiota. Crit Rev Food Sci Nutr 14:1–12Google Scholar
  100. Rodríguez ME, Pérez-Través L, Sangorrín MP et al (2017) Saccharomyces uvarum is responsible for the traditional fermentation of apple chicha in Patagonia. FEMS Yeast Res 17:1–11Google Scholar
  101. Romano P, Marchese R, Laurita C et al (1999) Biotechnological suitability of Saccharomycodes ludwigii for fermented beverages. World J Microbiol Biotechnol 15:451–454CrossRefGoogle Scholar
  102. Romano P, Capece A, Jespersen L (2006) Taxonomic and ecological diversity of foods and beverage yeasts. In: Querol A, Fleet GH (eds) Yeasts in food and beverages. Springer, Berlin, pp 13–54CrossRefGoogle Scholar
  103. Rossouw D, Naes T, Bauer FF (2008) Linking gene regulation and the exo-metabolome: a comparative transcriptomics approach to identify genes that impact on the production of volatile aroma compounds in yeast. BMC Genomics 9:530PubMedPubMedCentralCrossRefGoogle Scholar
  104. Saerens S, Swiegers JH (2014) Enhancement of beer flavor by a combination of Pichia yeast and different hop varieties, patent US20140234480 A1Google Scholar
  105. Saerens S, Swiegers JH (2016) Production of low-alcohol or alcohol-free beer with Pichia kluyveri yeast strains. U.S. Patent US2016/0010042Google Scholar
  106. Saison D, De Schutter DP, Vanbeneden N et al (2010) Decrease of aged beer aroma by the reducing activity of brewing yeast. J Agric Food Chem 58:3107–3115PubMedCrossRefGoogle Scholar
  107. San-Juan F, Ferreira V, Cacho J et al (2011) Quality and aromatic sensory descriptors (mainly fresh and dry fruit character) of Spanish red wines can be predicted from their aroma-active chemical composition. J Agric Food Chem 59:7916–7924PubMedCrossRefGoogle Scholar
  108. Schifferdecker AJ, Dashko S, Ishchuk OP et al (2014) The wine and beer yeast Dekkera bruxellensis. Yeast 31:323–332PubMedPubMedCentralCrossRefGoogle Scholar
  109. Sefa-Dedeh S, Sanni AI, Tetteh G et al (1999) Yeasts in the traditional brewing of Pito in Ghana. Word J Microb Biot 15:593–597CrossRefGoogle Scholar
  110. Serra Colomer M, Funch B, Forster J (2019) The raise of Brettanomyces yeast species for beer production. Curr Opin Biotech 56:30–35PubMedCrossRefGoogle Scholar
  111. Sibirny AA, Scheffers L (2002) Thematic section ‘biochemistry, genetics, biotechnology and ecology of non-conventional yeasts. FEMS Yeast Res 2:293Google Scholar
  112. Sicard D, Legras JL (2011) Bread, beer and wine: yeast domestication in the Saccharomyces Sensu stricto complex. C R Biol 334(3):229–236PubMedCrossRefGoogle Scholar
  113. Smith BD, Divol B (2018) The carbon consumption pattern of the spoilage yeast Brettanomyces bruxellensis in synthetic wine-like medium. Food Microbiol 73:39–48PubMedCrossRefGoogle Scholar
  114. Smukowski Heil C, Burton JN, Liachko I, Friedrich A, Hanson NA, Morris CL, Schacherer J, Shendure J, Thomas JH, Dunham MJ (2017) Identification of a novel interspecific hybrid yeast from a metagenomic spontaneously inoculated beer sample using Hi-C. Yeast 35:71–84PubMedCrossRefGoogle Scholar
  115. Sohrabvandi S, Hadi Razavi S, Mousavi M et al (2009) Application of Saccharomyces rouxii for the production of non-alcoholic beer. Food Sci Biotechnol 18:1132–1137Google Scholar
  116. Sohrabvandi S, Hadi Razavi S, Mousavi M et al (2010) Characteristics of different brewer’s yeast strains used for nonalcoholic beverage fermentation in media containing different fermentable sugars. Int J Biotechnol 8:178–185Google Scholar
  117. Spitaels F, Wieme AD, Janssens M et al (2015) The microbial diversity of an industrially produced lambic beer shares members of a traditionally produced one and reveals a core microbiota for lambic beer fermentation. Food Microbiol 49:23–32PubMedCrossRefGoogle Scholar
  118. Steensels J, Verstrepen KJ (2014) Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations. Annu Rev Microbiol 68(1):61–80PubMedCrossRefPubMedCentralGoogle Scholar
  119. Steensels J, Daenen L, Malcorps P et al (2015) Brettanomyces yeasts- from spoilage organisms to valuable contributors to industrial fermentations. Int J Food Microbiol 206:24–38PubMedCrossRefGoogle Scholar
  120. Tamang JP, Fleet GH (2009) Yeasts diversity in fermented foods and beverages. In: Satyanarayana T, Kunze G (eds) Yeast biotechnology: diversity and applications. Springer, Dordrecht, pp 169–198CrossRefGoogle Scholar
  121. Tataridis P, Kanelis A, Logotetis S et al (2013) Use of non-Saccharomyces Torulaspora delbrueckii yeast strains in winemaking and brewing. J Nat Sci (124):415–426Google Scholar
  122. Thomas-Hall SR, Turchetti B, Buzzini P et al (2010) Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 14:47–59PubMedCrossRefGoogle Scholar
  123. Tokpohozin SE, Lauterbach A, Fisher S et al (2016) Phenotypical and molecular characterization of yeast content in the starter of “Tchoukoutou”, a beninese African sorghum beer. Eur Food R Technol 242(12):2147–2160CrossRefGoogle Scholar
  124. Tsuji M, Kudoh S, Hoshino T (2016) Ethanol productivity of cryophilic basidiomycetous yeast Mrakia spp. correlates with ethanol tolerance. Mycoscience 57:42–50CrossRefGoogle Scholar
  125. Vallejo JM, Miranda P, Flores-Félix JD et al (2013) Atypical yeasts identified as Saccharomyces cerevisiae by MALDI-TOF MS and gene sequencing are the main responsible of fermentation of chicha, a traditional beverage from Peru. Syst Appl Microbiol 36:560–564PubMedCrossRefGoogle Scholar
  126. Van Oevelen D, Spaepen M, Timmermans P et al (1977) Microbiological aspect o spontaneous wort fermentation in the production of limbic and gueuze. J Inst Brew 83:356–360CrossRefGoogle Scholar
  127. van Rijswijck IMH, Wolkers-Rooijackers JCM, Abee T et al (2017) Performance of non-conventional yeasts in co-culture with brewers’ yeast for steering ethanol and aroma production. Microb Biotechnol 10:1591–1602PubMedPubMedCentralCrossRefGoogle Scholar
  128. Varela C (2016) The impact of non-Saccharomyces yeasts in the production of alcoholic beverages. Appl Microbiol Biotechnol 100:9861–9874PubMedPubMedCentralCrossRefGoogle Scholar
  129. Vaughan-Martini A, Martini A (2011) Saccharomyces. In: Kurtzman CP, Fell JW, Boekhout T (eds) The yeasts: a taxonomic study Elsevier, Oxford, pp 733–746Google Scholar
  130. Vervoort Y, Herrera-Malaver B, Mertens S et al (2016) Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavouring. J Appl Microbiol 121:721–733PubMedPubMedCentralCrossRefGoogle Scholar
  131. Wang J, Liu L, Ball T et al (2016) Reavealing a 5,000-y-old beer recipe in China. Proc Natl Acad Sci U S A 113:6444–6448PubMedPubMedCentralCrossRefGoogle Scholar
  132. Wolf K, Breunig K, Barth G (2003) Non conventional yeasts in genetics, biochemistry and biotechnology. Springer, BerlinCrossRefGoogle Scholar
  133. Yeo HQ, Liu SQ (2014) An overview of selected specialty beers: developments, challenges and prospects. Int J Food Sci Technol 49:1607–1618CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Ciro Sannino
    • 1
  • Ambra Mezzasoma
    • 1
  • Pietro Buzzini
    • 1
  • Benedetta Turchetti
    • 1
    Email author
  1. 1.Department of Agriculture, Food and Environmental Science, Industrial Yeasts Collection DBVPGUniversity of PerugiaPerugiaItaly

Personalised recommendations