Skip to main content

OCT Segmentation via Deep Learning: A Review of Recent Work

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 Workshops (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11367))

Included in the following conference series:

Abstract

Optical coherence tomography (OCT) is an important retinal imaging method since it is a non-invasive, high-resolution imaging technique and is able to reveal the fine structure within the human retina. It has applications for retinal as well as neurological disease characterization and diagnostics. The use of machine learning techniques for analyzing the retinal layers and lesions seen in OCT can greatly facilitate such diagnostics tasks. The use of deep learning (DL) methods principally using fully convolutional networks has recently resulted in significant progress in automated segmentation of optical coherence tomography. Recent work in that area is reviewed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wong, T.Y., Cheung, N., Mitchell, P.: Diabetic retinopathy. Lancet 376(9735), 124–136 (2010)

    Article  Google Scholar 

  2. Bressler, N.M.: Age-related macular degeneration is the leading cause of blindness. JAMA 291(15), 1900–1901 (2004)

    Article  Google Scholar 

  3. London, A., Benhar, I., Schwartz, M.: The retina as a window to the brain-from eye research to CNS disorders. Nat. Rev. Neurol. 9(1), 44–53 (2013)

    Article  Google Scholar 

  4. Tian, J., et al.: Performance evaluation of automated segmentation software on optical coherence tomography volume data. J. Biophoton. 9(5), 478–489 (2016)

    Article  Google Scholar 

  5. Burlina, P., Freund, D.E., Dupas, B., Bressler, N.: Automatic screening of age-related macular degeneration and retinal abnormalities. In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC, pp. 3962–3966. IEEE (2011)

    Google Scholar 

  6. Holz, F.G., Strauss, E.C., Schmitz-Valckenberg, S., van Lookeren Campagne, M.: Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology 121(5), 1079–1091 (2014)

    Article  Google Scholar 

  7. Venhuizen, F.G., et al.: Automated staging of age-related macular degeneration using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 58(4), 2318–2328 (2017)

    Article  Google Scholar 

  8. Burlina, P., Freund, D.E., Joshi, N., Wolfson, Y., Bressler, N.M.: Detection of age-related macular degeneration via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 184–188. IEEE (2016)

    Google Scholar 

  9. Freund, D.E., Bressler, N., Burlina, P.: Automated detection of drusen in the macula. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009, pp. 61–64. IEEE, 2009

    Google Scholar 

  10. Feeny, A.K., Tadarati, M., Freund, D.E., Bressler, N.M., Burlina, P.: Automated segmentation of geographic atrophy of the retinal epithelium via random forests in AREDS color fundus images. Comput. Biol. Med. 65, 124–136 (2015)

    Article  Google Scholar 

  11. Juang, R., McVeigh, E.R., Hoffmann, B., Yuh, D., Burlina, P.: Automatic segmentation of the left-ventricular cavity and atrium in 3D ultrasound using graph cuts and the radial symmetry transform. In: 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 606–609. IEEE (2011)

    Google Scholar 

  12. Cabrera DeBuc, D.: A review of algorithms for segmentation of retinal image data using optical coherence tomography. In: Image Segmentation, InTech (2011)

    Google Scholar 

  13. Heidelberg Engineering GmbH. Spectralis HRA+OCT user manual software (2014)

    Google Scholar 

  14. Lee, K., Abramoff, M.D., Garvin, M., Sonka, M.: The Iowa reference algorithms (retinal image analysis lab, Iowa institute for biomedical imaging, IA), (2014)

    Google Scholar 

  15. Lang, A., et al.: Retinal layer segmentation of macular OCT images using boundary classification. Biomed. Optics Express 4(7), 1133–1152 (2013)

    Article  Google Scholar 

  16. Dufour, P.A., et al.: Graph-based multi-surface segmentation of OCT data using trained hard and soft constraints. IEEE Trans. Med. Imag. 32(3), 531–543 (2013)

    Article  Google Scholar 

  17. Tian, J., et al.: Real-time automatic segmentation of optical coherence tomography volume data of the macular region. PLOS One 10(8) (2015)

    Article  Google Scholar 

  18. Breger, A., et al.: Supervised learning and dimension reduction techniques for quantification of retinal fluid in optical coherence tomography images. Eye 31, 1212 (2017)

    Article  Google Scholar 

  19. Chiu, S.J., Allingham, M.J., Mettu, P.S., Cousins, S.W., Izatt, J.A., Farsiu, S.: Kernel regression based segmentation of optical coherence tomography images with diabetic macular edema. Biomed. Opt. Express 6(4), 1172–1194 (2015)

    Article  Google Scholar 

  20. Esteva, A., et al.: Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639), 115–118 (2017)

    Article  Google Scholar 

  21. Burlina, P., Billings, S., Joshi, N., Albayda, J.: Automated diagnosis of myositis from muscle ultrasound: exploring the use of machine learning and deep learning methods. PLOS One 12(8) (2017)

    Article  Google Scholar 

  22. Burlina, P., Joshi, N., Pekala, M., Pacheco, K., Freund, D.E., Bressler, N.M.: Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks. JAMA Ophtalmol. 135, 1170–1176 (2017)

    Article  Google Scholar 

  23. Burlina, P., Pacheco, K.D., Joshi, N., Freund, D.E., Bressler, N.M.: Comparing humans and deep learning performance for grading AMD: a study in using universal deep features and transfer learning for automated AMD analysis. Comput. Biol. Med. 82, 80–86 (2017)

    Article  Google Scholar 

  24. Burlina, P., Joshi, N., Pacheco, K.D., Freund, D.E., Kong, J., Bressler, N.M.: Use of deep learning for detailed severity characterization and estimation of 5-year risk among patients with age-related macular degeneration. JAMA Ophthalmol. 136, 1359–1366 (2018)

    Article  Google Scholar 

  25. Burlina, P., Joshi, N., Pacheco, K.D., Freund, D.E., Kong, J., Bressler, N.M.: Utility of deep learning methods for referability classification of age-related macular degeneration. JAMA Ophthalmol. 136, 1305–1307 (2018)

    Article  Google Scholar 

  26. Ting, D.S.W., Liu, Y., Burlina, P., Xu, X., Bressler, N.M., Wong, T.Y.: AI for medical imaging goes deep. Nat. Med. 24(5), 539 (2018)

    Article  Google Scholar 

  27. Ting, D.S.W., et al.: Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA 318(22), 2211–2223 (2017)

    Article  Google Scholar 

  28. Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018)

    Article  Google Scholar 

  29. Lee, C.S., Baughman, D.M., Lee, A.Y.: Deep learning is effective for classifying normal versus age-related macular degeneration OCT images. Ophthalmol. Retina 1(4), 322–327 (2017)

    Article  Google Scholar 

  30. Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., Bengio, Y.: The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1175–1183. IEEE (2017)

    Google Scholar 

  31. Huang, G., Liu, Z., Weinberger, K.Q., van der Maaten, L.: Densely connected convolutional networks. arXiv preprint arXiv:1608.06993 (2016)

  32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  33. He, Y., et al.: Towards topological correct segmentation of macular OCT from cascaded FCNs. In: Cardoso, M.J., et al. (eds.) FIFI/OMIA -2017. LNCS, vol. 10554, pp. 202–209. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67561-9_23

    Chapter  Google Scholar 

  34. Fang, L., Cunefare, D., Wang, C., Guymer, R.H., Li, S., Farsiu, S.: Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search. Biomed. Opt. Express 8(5), 2732–2744 (2017)

    Article  Google Scholar 

  35. Roy, A.G., et al.: Relaynet: retinal layer and fluid segmentation of macular optical coherence tomography using fully convolutional networks. Biomed. Opt. Express 8(8), 3627–3642 (2017)

    Article  Google Scholar 

  36. Devalla, S.K., et al.: A deep learning approach to digitally stain optical coherence tomography images of the optic nerve head. Invest. Ophthalmol. Vis. Sci. 59(1), 63–74 (2018)

    Article  Google Scholar 

  37. Lee, C.S., Tyring, A.J., Deruyter, N.P., Wu, Y., Rokem, A., Lee, A.Y.: Deep-learning based, automated segmentation of macular edema in optical coherence tomography. bioRxiv, p. 135640 (2017)

    Google Scholar 

  38. Pekala, M., Joshi, N., Freund, D.E., Bressler, N.M., DeBuc, D.C., Burlina, P.M.: Deep learning based retinal OCT segmentation. arXiv preprint arXiv:1801.09749 (2018)

  39. Rasmussen, C.E., Williams, C.K.: Gaussian Processes for Machine Learning, vol. 1. MIT press Cambridge, Cambridge (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Burlina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pekala, M., Joshi, N., Liu, T.Y.A., Bressler, N.M., Cabrera DeBuc, D., Burlina, P. (2019). OCT Segmentation via Deep Learning: A Review of Recent Work. In: Carneiro, G., You, S. (eds) Computer Vision – ACCV 2018 Workshops. ACCV 2018. Lecture Notes in Computer Science(), vol 11367. Springer, Cham. https://doi.org/10.1007/978-3-030-21074-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21074-8_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21073-1

  • Online ISBN: 978-3-030-21074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics