Skip to main content

Simultaneous Recognition of Horizontal and Vertical Text in Natural Images

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 Workshops (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11367))

Included in the following conference series:

Abstract

Recent state-of-the-art scene text recognition methods have primarily focused on horizontal text in images. However, in several Asian countries, including China, large amounts of text in signs, books, and TV commercials are vertically directed. Because the horizontal and vertical texts exhibit different characteristics, developing an algorithm that can simultaneously recognize both types of text in real environments is necessary. To address this problem, we adopted the direction encoding mask (DEM) and selective attention network (SAN) methods based on supervised learning. DEM contains directional information to compensate in cases that lack text direction; therefore, our network is trained using this information to handle the vertical text. The SAN method is designed to work individually for both types of text. To train the network to recognize both types of text and to evaluate the effectiveness of the designed model, we prepared a new synthetic vertical text dataset and collected an actual vertical text dataset (VTD142) from the Web. Using these datasets, we proved that our proposed model can accurately recognize both vertical and horizontal text and can achieve state-of-the-art results in experiments using benchmark datasets, including the street view test (SVT), IIIT-5k, and ICDAR. Although our model is relatively simple as compared to its predecessors, it maintains the accuracy and is trained in an end-to-end manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Almazán, J., Gordo, A., Fornés, A., Valveny, E.: Word spotting and recognition with embedded attributes. IEEE Trans. Pattern Anal. Mach. Intell. 36(12), 2552–2566 (2014)

    Article  Google Scholar 

  2. Alsharif, O., Pineau, J.: End-to-end text recognition with hybrid HMM maxout models. arXiv preprint arXiv:1310.1811 (2013)

  3. Bissacco, A., Cummins, M., Netzer, Y., Neven, H.: PhotoOCR: reading text in uncontrolled conditions. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 785–792 (2013)

    Google Scholar 

  4. Cheng, Z., Bai, F., Xu, Y., Zheng, G., Pu, S., Zhou, S.: Focusing attention: towards accurate text recognition in natural images. CoRR abs/1709.02054 (2017). http://arxiv.org/abs/1709.02054

  5. Cheng, Z., Liu, X., Bai, F., Niu, Y., Pu, S., Zhou, S.: Arbitrarily-oriented text recognition. CoRR abs/1711.04226 (2017). http://arxiv.org/abs/1711.04226

  6. Goel, V., Mishra, A., Alahari, K., Jawahar, C.: Whole is greater than sum of parts: recognizing scene text words. In: 2013 12th International Conference on Document Analysis and Recognition (ICDAR), pp. 398–402. IEEE (2013)

    Google Scholar 

  7. Gordo, A.: Supervised mid-level features for word image representation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2956–2964 (2015)

    Google Scholar 

  8. Gupta, A., Vedaldi, A., Zisserman, A.: Synthetic data for text localisation in natural images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2315–2324 (2016)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  11. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Deep structured output learning for unconstrained text recognition. arXiv preprint arXiv:1412.5903 (2014)

  12. Jaderberg, M., Simonyan, K., Vedaldi, A., Zisserman, A.: Synthetic data and artificial neural networks for natural scene text recognition. CoRR abs/1406.2227 (2014). http://arxiv.org/abs/1406.2227

  13. Karatzas, D., et al.: ICDAR 2015 competition on robust reading. In: 2015 13th International Conference on Document Analysis and Recognition (ICDAR), pp. 1156–1160. IEEE (2015)

    Google Scholar 

  14. Karatzas, D., et al.: ICDAR 2013 robust reading competition. In: Document Analysis and Recognition (ICDAR), pp. 1484–1493 (2013)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  16. Lee, C.Y., Osindero, S.: Recursive recurrent nets with attention modeling for OCR in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2231–2239 (2016)

    Google Scholar 

  17. Liang, M., Hu, X.: Recurrent convolutional neural network for object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3367–3375 (2015)

    Google Scholar 

  18. Liu, X., Liang, D., Yan, S., Chen, D., Qiao, Y., Yan, J.: FOTS: fast oriented text spotting with a unified network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5676–5685 (2018)

    Google Scholar 

  19. Lucas, S.M., et al.: ICDAR 2003 robust reading competitions, p. 682. IEEE (2003)

    Google Scholar 

  20. Mishra, A., Alahari, K., Jawahar, C.: Scene text recognition using higher order language priors. In: BMVC-British Machine Vision Conference. BMVA (2012)

    Google Scholar 

  21. Novikova, T., Barinova, O., Kohli, P., Lempitsky, V.: Large-lexicon attribute-consistent text recognition in natural images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 752–765. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_54

    Chapter  Google Scholar 

  22. Rodriguez-Serrano, J.A., Gordo, A., Perronnin, F.: Label embedding: a frugal baseline for text recognition. Int. J. Comput. Vis. 113(3), 193–207 (2015)

    Article  Google Scholar 

  23. Shi, B., Bai, X., Yao, C.: An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2298–2304 (2017)

    Article  Google Scholar 

  24. Shi, B., Wang, X., Lv, P., Yao, C., Bai, X.: Robust scene text recognition with automatic rectification. CoRR abs/1603.03915 (2016). http://arxiv.org/abs/1603.03915

  25. Su, B., Lu, S.: Accurate scene text recognition based on recurrent neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 35–48. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_3

    Chapter  Google Scholar 

  26. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  27. Wang, J., Hu, X.: Gated recurrent convolution neural network for OCR. In: Advances in Neural Information Processing Systems, pp. 335–344 (2017)

    Google Scholar 

  28. Wang, K., Babenko, B., Belongie, S.: End-to-end scene text recognition. In: 2011 IEEE International Conference on Computer Vision (ICCV), pp. 1457–1464. IEEE (2011)

    Google Scholar 

  29. Wang, T., Wu, D.J., Coates, A., Ng, A.Y.: End-to-end text recognition with convolutional neural networks. In: 2012 21st International Conference on Pattern Recognition (ICPR), pp. 3304–3308. IEEE (2012)

    Google Scholar 

  30. Wojna, Z., et al.: Attention-based extraction of structured information from street view imagery. arXiv preprint arXiv:1704.03549 (2017)

  31. Yao, C., Bai, X., Shi, B., Liu, W.: Strokelets: a learned multi-scale representation for scene text recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4042–4049 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chankyu Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, C., Yoon, Y., Lee, J., Kim, J. (2019). Simultaneous Recognition of Horizontal and Vertical Text in Natural Images. In: Carneiro, G., You, S. (eds) Computer Vision – ACCV 2018 Workshops. ACCV 2018. Lecture Notes in Computer Science(), vol 11367. Springer, Cham. https://doi.org/10.1007/978-3-030-21074-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21074-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21073-1

  • Online ISBN: 978-3-030-21074-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics