Skip to main content

Post-Harvest Treatments and Related Food Quality

  • Chapter
  • First Online:
Food Tech Transitions

Abstract

Fruit and vegetables are still living plant organs after harvest with an active metabolism and ongoing respiration, ripening, and senescence processes which have to be controlled to maintain the quality of the products.

Most analytical methods to determine the quality of fruit and vegetables target specific compounds, compound classes or chemical sum parameters and provide thus valuable information about basic quality characteristics. However, recent technological advances have enabled the development of extremely powerful analytical instruments which are able to detect and quantify hundreds to thousands of known and unknown compounds in one analysis.

A reduction of temperature of 10 °C is slowing the metabolic activity of fruit and vegetables by a factor of two to three. Therefore, temperature during transport and storage should be at a product specific minimum to preserve harvest quality of fruit and vegetables. In addition to low storage temperatures, storage under controlled atmosphere and modified atmosphere packaging reduces respiration, ethylene production, and physiological activity and helps to preserve harvest quality of fruit and vegetables.

Post-harvest treatments like hot water treatment, UV-C treatment, and fermentation help to maintain quality and safety of fruit and vegetables after harvest. The use of starter cultures lead to an optimized fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aked, J. (2002). Maintaining the post-harvest quality of fruits and vegetables. In Fruit and vegetable processing (pp. 119–149). Boca Raton: Woodhead Publishing.

    Google Scholar 

  • Auinger, A., Trierweiler, B., Lücke, F. K., & Tauscher, B. (2005). Influence of hot water treatment on different quality parameters of apples during storage. Journal of Applied Botany and Food Quality, 79(3), 154–156.

    Google Scholar 

  • Bekele, E. A., Ampofo-Asiama, J., Alis, R. R., Hertog, M. L., Nicolai, B. M., & Geeraerd, A. H. (2016). Dynamics of metabolic adaptation during initiation of controlled atmosphere storage of ‘Jonagold’ apple: Effects of storage gas concentrations and conditioning. Postharvest Biology and Technology, 117, 9–20.

    Article  CAS  Google Scholar 

  • BeMiller, J. N. (2017). Carbohydrate analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 333–360). Cham: Springer.

    Chapter  Google Scholar 

  • Benkeblia, N. (2014). Metabolomics and postharvest sciences: Challenges and perspectives. Acta Horticulturae, 1047, 303–308.

    Google Scholar 

  • Brasil, I. M., & Siddiqui, M. W. (2018). Postharvest quality of fruits and vegetables: An overview. In M. W. Siddiqui (Ed.), Preharvest modulation of postharvest fruit and vegetable quality (pp. 1–40). Fallik and Illic, London: Academic Press.

    Google Scholar 

  • Brizzolara, S., Santucci, C., Tenori, L., Hertog, M., Nicolai, B., Stürz, S., Zanella, A., & Tonutti, P. (2017). A metabolomics approach to elucidate apple fruit responses to static and dynamic controlled atmosphere storage. Postharvest Biology and Technology, 127, 76–87.

    Article  CAS  Google Scholar 

  • Bunzel, M., & Schendel, R. R. (2017). Determination of (total) phenolics and antioxidant capacity in food and ingredients. In S. S. Nielsen (Ed.), Food Analysis (pp. 455–468). Cham: Springer.

    Google Scholar 

  • Day, B. P. F. (2002). New modified atmosphere packaging (MAP) techniques for fresh prepared fruit and vegetables. In W. Jongen, (Ed.), Fruit and vegetable processing: Improving quality. Boca Raton: Woodhead Publishing.

    Google Scholar 

  • Del-Valle, V., Hernández-Muñoz, P., Catalá, R., & Gavara, R. (2009). Optimization of an equilibrium modified atmosphere packaging (EMAP) for minimally processed mandarin segments. Journal of Food Engineering, 91(3), 474–481.

    Article  CAS  Google Scholar 

  • Djioua, T., Charles, F., Lopez-Lauri, F., Filgueiras, H., Coudret, A., Freire, M., Jr., Ducamp-Collin, M. N., & Sallanon, H. (2009). Improving the storage of minimally processed mangoes (Mangifera indica L.) by hot water treatments. Postharvest Biology and Technology, 52(2), 221–226.

    Article  CAS  Google Scholar 

  • Fallik, E., & Ilic, Z. (2018). Pre-and postharvest treatments affecting flavor quality of fruits and vegetables. In M. W. Siddiqui (Ed.), Preharvest modulation of postharvest fruit and vegetable quality (pp. 139–168). London: Academic Press.

    Google Scholar 

  • Felicetti, E., Mattheis, J. P., Zhu, Y., & Fellman, J. K. (2011). Dynamics of ascorbic acid in ‘Braeburn’and ‘Gala’ apples during on-tree development and storage in atmospheres conducive to internal browning development. Postharvest Biology and Technology, 61(2–3), 95–102.

    Google Scholar 

  • Gogo, E. O., Förster, N., Dannehl, D., Frommherz, L., Trierweiler, B., Opiyo, A. M., Ulrichs, C., & Huyskens-Keil, S. (2018). Postharvest UV-C application to improve health promoting secondary plant compound pattern in vegetable amaranth. Innovative Food Science & Emerging Technologies, 45, 426–437.

    Article  CAS  Google Scholar 

  • González-Aguilar, G. A., Ayala-Zavala, J. F., Ruiz-Cruz, S., Acedo-Félix, E., & Dıaz-Cinco, M. E. (2004). Effect of temperature and modified atmosphere packaging on overall quality of fresh-cut bell peppers. LWT-Food Science and Technology, 37(8), 817–826.

    Article  CAS  Google Scholar 

  • Habwe, F. O., Walingo, K. M., & Onyango, M. O. A. (2008). Food processing and preparation technologies for sustainable utilization of African indigenous vegetables for nutrition security and wealth creation in Kenya. In G. L. Robertson & J. R. Lupien (Eds.), Using food science and technology to improve nutrition and promote national development (pp. 2–9). Toronto: International Union of Food Science & Technology (IUFoST).

    Google Scholar 

  • Harman, J. E., & McDonald, B. (1989). Controlled atmosphere storage of kiwifruit. Effect on fruit quality and composition. Scientia Horticulturae, 37(4), 303–315.

    Article  Google Scholar 

  • Hatoum, D., Annaratone, C., Hertog, M. L. A. T. M., Geeraerd, A. H., & Nicolai, B. M. (2014). Targeted metabolomics study of ‘Braeburn’ apples during long-term storage. Postharvest Biology and Technology, 96, 33–41.

    Article  CAS  Google Scholar 

  • Holzapfel, W. H. (2002). Appropriate starter culture technologies for small-scale fermentation in developing countries. International Journal of Food Microbiology, 75(3), 197–212.

    Article  CAS  PubMed  Google Scholar 

  • James, C., Seignemartin, V., & James, S. J. (2009). The freezing and supercooling of garlic (Allium sativum L.). International Journal of Refrigeration, 32(2), 253–260.

    Article  CAS  Google Scholar 

  • Jom, K. N., Frank, T., & Engel, K. H. (2011). A metabolite profiling approach to follow the sprouting process of mung beans (Vigna radiata). Metabolomics, 7(1), 102–117.

    Article  CAS  Google Scholar 

  • Karadag, A., Ozcelik, B., & Saner, S. (2009). Review of methods to determine antioxidant capacities. Food Analytical Methods, 2(1), 41–60.

    Article  Google Scholar 

  • Karapanos, I. C., Chandra, M., Akoumianakis, K. A., Passam, H. C., & Alexopoulos, A. A. (2015). The ripening and quality characteristics of cherry tomato fruit in relation to the time of harvest. Acta Horticulturae, 1079, 495–500.

    Article  Google Scholar 

  • Latocha, P., Krupa, T., Jankowski, P., & Radzanowska, J. (2014). Changes in postharvest physicochemical and sensory characteristics of hardy kiwifruit (Actinidia arguta and its hybrid) after cold storage under normal versus controlled atmosphere. Postharvest Biology and Technology, 88, 21–33.

    Article  CAS  Google Scholar 

  • Leisso, R., Buchanan, D., Lee, J., Mattheis, J., & Rudell, D. (2013). Cell wall, cell membrane, and volatile metabolism are altered by antioxidant treatment, temperature shifts, and peel necrosis during apple fruit storage. Journal of Agricultural and Food Chemistry, 61(6), 1373–1387.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Sanchez, P., De Vos, R. C. H., Jonker, H. H., Mumm, R., Hall, R. D., Bialek, L., Leenman, R., Strassburg, K., Vreeken, R., Hankemeier, T., & Schumm, S. (2015). Comprehensive metabolomics to evaluate the impact of industrial processing on the phytochemical composition of vegetable purees. Food Chemistry, 168, 348–355.

    Article  CAS  PubMed  Google Scholar 

  • Mack, C., Wefers, D., Schuster, P., Weinert, C. H., Egert, B., Bliedung, S., Trierweiler, B., Muhle-Goll, C., Bunzel, M., Luy, B., & Kulling, S. E. (2017). Untargeted multi-platform analysis of the metabolome and the non-starch polysaccharides of kiwifruit during postharvest ripening. Postharvest Biology and Technology, 125, 65–76.

    Article  CAS  Google Scholar 

  • Matissek, R., Fischer, M., & Steiner, G. (2018). Lebensmittelanalytik. Berlin: Springer Spektrum.

    Book  Google Scholar 

  • Mauer, L. J., & Bradley, R. L. (2017). Moisture and total solids analysis. In S. S. Nielsen (Ed.), Food analysis (pp. 257–286). Cham: Springer.

    Chapter  Google Scholar 

  • Maxin, P., Williams, M., & Weber, R. W. (2014). Control of fungal storage rots of apples by hot-water treatments: A Northern European perspective. Erwerbs-Obstbau, 56(1), 25–34.

    Google Scholar 

  • Mitcham, B., Cantwell, M., & Kader, A. (1996). Methods for determining quality of fresh commodities. Perishables Handling Newsletter, 85, 1–5.

    Google Scholar 

  • Mizrach, A., Lu, R., & Rubino, M. (2009). Gloss evaluation of curved-surface fruits and vegetables. Food and Bioprocess Technology, 2(3), 300–307.

    Article  Google Scholar 

  • Müller, A., Noack, L., Greiner, R., Stahl, M. R., & Posten, C. (2014). Effect of UV-C and UV-B treatment on polyphenol oxidase activity and shelf life of apple and grape juices. Innovative Food Science & Emerging Technologies, 26, 498–504.

    Article  CAS  Google Scholar 

  • Nardozza, S., Boldingh, H. L., Osorio, S., Höhne, M., Wohlers, M., Gleave, A. P., MacRae, E. A., Richardson, A. C., Atkinson, R. G., Sulpice, R., & Fernie, A. R. (2013). Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. Journal of Experimental Botany, 64(16), 5049–5063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ndlela, S., Ekesi, S., Ndegwa, P. N., Ong’amo, G. O., & Mohamed, S. A. (2017). Post-harvest disinfestation of Bactrocera dorsalis (Hendel)(Diptera: Tephritidae) in mango using hot-water treatments. Journal of Applied Entomology, 141(10), 848–859.

    Article  CAS  Google Scholar 

  • Nicolai, B. M., Pedreschi, R., Geeraerd, A., Vandendriessche, T., & Hertog, M. L. A. T. M. (2010). Postharvest metabolomics. Acta Horticulturae, 880, 369–376.

    Google Scholar 

  • Obenland, D., Collin, S., Sievert, J., Negm, F., & Arpaia, M. L. (2012). Influence of maturity and ripening on aroma volatiles and flavor in ‘Hass’ avocado. Postharvest Biology and Technology, 71, 41–50.

    Article  CAS  Google Scholar 

  • Odriozola-Serrano, I., Soliva-Fortuny, R., & Martín-Belloso, O. (2009). Influence of storage temperature on the kinetics of the changes in anthocyanins, vitamin C, and antioxidant capacity in fresh-cut strawberries stored under high-oxygen atmospheres. Journal of Food Science, 74(2), C184–C191.

    Article  CAS  PubMed  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2009). Guidance on objective tests to determine quality of fruits and vegetables fresh and dry and dried produce. Available from https://www.ble.de/SharedDocs/Downloads/EN/Nutrition-Food/Quality-Control/BestimmungFruechteEN.pdf?__blob=publicationFile&v=1

  • Perini, M. A., Sin, I. N., Jara, A. M. R., Lobato, M. E. G., Civello, P. M., & Martínez, G. A. (2017). Hot water treatments performed in the base of the broccoli stem reduce postharvest senescence of broccoli (Brassica oleracea L. Var italic) heads stored at 20 °C. LWT-Food Science and Technology, 77, 314–322.

    Google Scholar 

  • Picó, Y., La Farre, M., Segarra, R., & Barceló, D. (2010). Profiling of compounds and degradation products from the postharvest treatment of pears and apples by ultra-high pressure liquid chromatography quadrupole-time-of-flight mass spectrometry. Talanta, 81(1–2), 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Porat, R., Daus, A., Weiss, B., Cohen, L., Fallik, E., & Droby, S. (2000). Reduction of postharvest decay in organic citrus fruit by a short hot water brushing treatment. Postharvest Biology and Technology, 18(2), 151–157.

    Article  Google Scholar 

  • Putnik, P., Kovačević, D. B., Herceg, K., Roohinejad, S., Greiner, R., Bekhit, A. E. D. A., & Levaj, B. (2017). Modelling the shelf-life of minimally-processed fresh-cut apples packaged in a modified atmosphere using food quality parameters. Food Control, 81, 55–64.

    Article  CAS  Google Scholar 

  • Raffo, A., Baiamonte, I., & Paoletti, F. (2008). Changes in antioxidants and taste-related compounds content during cold storage of fresh-cut red sweet peppers. European Food Research and Technology, 226(5), 1167–1174.

    Article  CAS  Google Scholar 

  • Riganakos, K. A., Karabagias, I. K., Gertzou, I., & Stahl, M. (2017). Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innovative Food Science & Emerging Technologies, 42, 165–172.

    Article  CAS  Google Scholar 

  • Roser, S. A. T., Bernhard, B., Peter, G., Kuhnert, H., Haß, M., & Banse, M. (2013). Lebensmittelverluste bei Äpfeln. Produktions- und Vermarktungsprozesse; Vorliegende Daten zu Lebensmittelverlusten bei Äpfeln; Hochrechnung der Verluste für Deutschland. In G. Peter, K. Heike, M. Haß, M. Banse, S.A.T Roser, B. Trierweiler, & C.B. Adler (Eds.) Einschätzung der pflanzlichen Lebensmittelverluste im Bereich der landwirtschaftlichen Urproduktion: Bericht im Auftrag des Bundesministeriums für Ernährung, Landwirtschaft und Verbraucherschutz (BMELV).

    Google Scholar 

  • Rudell, D. R., Mattheis, J. P., & Curry, E. A. (2008). Prestorage ultraviolet− white light irradiation alters apple peel metabolome. Journal of Agricultural and Food Chemistry, 56(3), 1138–1147.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Rangel, J. C., Benavides, J., Heredia, J. B., Cisneros-Zevallos, L., & Jacobo-Velázquez, D. A. (2013). The Folin–Ciocalteu assay revisited: Improvement of its specificity for total phenolic content determination. Analytical Methods, 5(21), 5990–5999.

    Article  CAS  Google Scholar 

  • Schirmer, H. (2001). Hinweise zur Lagerung der Apfelsorte Rubinette. Obstbau: die Fachzeitschrift für den Obstbau-Profi, 26(10), 539–541.

    Google Scholar 

  • Simões, A. D., Allende, A., Tudela, J. A., Puschmann, R., & Gil, M. I. (2011). Optimum controlled atmospheres minimise respiration rate and quality losses while increase phenolic compounds of baby carrots. LWT-Food Science and Technology, 44(1), 277–283.

    Article  CAS  Google Scholar 

  • Sivakumar, D., Jiang, Y., & Yahia, E. M. (2011). Maintaining mango (Mangifera indica L.) fruit quality during the export chain. Food Research International, 44(5), 1254–1263.

    Article  Google Scholar 

  • Trierweiler, B., Schirmer, H., & Tauscher, B. (2003). Hot water treatment to control Gloeosporium disease on apples during long-term storage. Journal of Applied Botany, 77(5/6), 156–159.

    Google Scholar 

  • Tyl, C., & Sadler, G. D. (2017). pH and titratable acidity. In S. S. Nielsen (Ed.), Food analysis (pp. 389–406). Cham: Springer.

    Chapter  Google Scholar 

  • Usall, J., Ippolito, A., Sisquella, M., & Neri, F. (2016). Physical treatments to control postharvest diseases of fresh fruits and vegetables. Postharvest Biology and Technology, 122, 30–40.

    Article  Google Scholar 

  • Wafula, E. N. (2017). Effects of postharvest-processing technologies on the safety and quality of African indigenous leafy vegetables. Unpublished Dissertation. Resource document. http://ediss.sub.uni-hamburg.de/volltexte/2017/8777/.

  • Wafula, E. N., Franz, C. M., Rohn, S., Huch, M., Mathara, J. M., & Trierweiler, B. (2016). Fermentation of african indigenous leafy vegetables to lower post-harvest losses, maintain quality and increase product safety. African Journal of Horticultural Science, 9, 1–13.

    Google Scholar 

  • Waterhouse, A. L. (2002). Determination of total phenolics. Current Protocols in Food Analytical Chemistry, 6(1), I1.1.1–I1.1.8.

    Google Scholar 

  • Winter, F., & Link, H. (2002). Lucas’ Anleitung zum Obstbau (32. Auflage), Stuttgart-Hohenheim: Ulmer.

    Google Scholar 

  • Wojciechowska, E., Weinert, C. H., Egert, B., Trierweiler, B., Schmidt-Heydt, M., Horneburg, B., Graeff-Hönninger, S., Kulling, S. E., & Geisen, R. (2014). Chlorogenic acid, a metabolite identified by untargeted metabolome analysis in resistant tomatoes, inhibits the colonization by Alternaria alternata by inhibiting alternariol biosynthesis. European Journal of Plant Pathology, 139(4), 735–747.

    Article  CAS  Google Scholar 

  • Zhang, C., Trierweiler, B., Li, W., Butz, P., Xu, Y., Rüfer, C. E., Ma, Y., & Zhao, X. (2011). Comparison of thermal, ultraviolet-c, and high pressure treatments on quality parameters of watermelon juice. Food Chemistry, 126(1), 254–260.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernhard Trierweiler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trierweiler, B., Weinert, C.H. (2019). Post-Harvest Treatments and Related Food Quality. In: Piatti, C., Graeff-Hönninger, S., Khajehei, F. (eds) Food Tech Transitions. Springer, Cham. https://doi.org/10.1007/978-3-030-21059-5_3

Download citation

Publish with us

Policies and ethics