Skip to main content

Abstract

Composites have been the most widely used applications for coir fibers. One of the simplest approaches for manufacturing coir fibers based composites is to use the fibers as reinforcement and epoxy or other synthetic polymers as resins. Completely biodegradable coir-based composites have also been developed using natural polymers such as wheat gluten, soy-based resins, and synthetic biopolymers such as poly(lactic acid) as matrix. In addition, coir fibers have been physically and chemically modified and various fillers have been used to improve the properties of coir-based composites. Similarly, coir fibers have been combined with other fibers and matrices to develop hybrid composites with distinct properties suitable for various applications. This chapter covers the coir-based synthetic polymer composites, coir-based natural polymer matrix completely biodegradable composites, and also coir based hybrid composites in separate sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul Khalil HPS, Masri M, Saurabh CK, Fazita MRN, Azniwati AA, Sri Aprilia NA, Rosamah E, Dungani R (2017) Incorporation of coconut shell based nanoparticles in kenaf/coconut fibres reinforced vinyl ester composites. Mater Res Exp 4(3):035020

    Article  Google Scholar 

  • Abdullah NM, Ahmad I (2012) Effect of chemical treatment on mechanical and water-sorption properties coconut fiber-unsaturated polyester from recycled PET. ISRN Mater Sci 2012:134683

    Google Scholar 

  • Abitha VK, Rane AV (2015) Studies in mechanical, thermal and morphological analusis of EPDM/PolyPropylene coconut pith composites. Moroccan J Chem 3(2):3–2

    Google Scholar 

  • Adnan NAM, Saidin WANW, Musa MA, Zaidi AMA, Mohideen SR (2014) Mechanical performance of coconut coir fiber reinforced urea formaldehyde composites. Aust J Basic Appl Sci 8(15):205–210

    Google Scholar 

  • Aguele FO, Madufor CI (2012) Effects of carbonised coir on physical properties of natural rubber composites. Am J Polym Sci 2(3):28–34

    Article  Google Scholar 

  • Aguele FO, Madufor CI, Adekunle KF (2014) Comparative study of physical properties of polymer composites reinforced with uncarbonised and carbonised coir. Open J Polym Chem 4(3):73–77

    Article  Google Scholar 

  • Arrakhiz FZ, El Achaby M, Kakou AC, Vaudreuil S, Benmoussa K, Bouhfid R, Fassi-Fehri O, Qaiss A (2012) Mechanical properties of high density polyethylene reinforced with chemically modified coir fibers: impact of chemical treatments. Mater Des 37:379–383

    Article  Google Scholar 

  • Arya A, Tomlal JE, Gejo G, Kuruvilla J (2015) Commingled composites of polypropylene/coir-sisal yarn: effect of chemical treatments on thermal and tensile properties. E-Polymers 15(3):169–177

    Article  Google Scholar 

  • Barreto ACH, Junior AEC, Freitas JEB, Rosa DS, Barcellos WM, Freire FNA, Fechine PBA, Mazzetto SE (2013) Biocomposites from dwarf-green Brazilian coconut impregnated with cashew nut shell liquid resin. J Compos Mater 47(4):459–466

    Article  Google Scholar 

  • Bettini SHP, Biteli AC, Bonse BC, Morandim-Giannetti A d A (2015) Polypropylene composites reinforced with untreated and chemically treated coir: effect of the presence of compatibilizer. Polym Eng Sci 55(9):2050–2057

    Article  Google Scholar 

  • Bhagat VK, Biswas S, Dehury J (2014) Physical, mechanical, and water absorption behavior of coir/glass fiber reinforced epoxy based hybrid composites. Polym Compos 35(5):925–930

    Article  Google Scholar 

  • Cheng F, Hu Y, Yuan J (2014) Preparation and characterization of glass fiber-coir hybrid composites by a novel and facile Prepreg/Press process. Fibers Polym 15(8):1715–1721

    Article  Google Scholar 

  • Chollakup R, Smitthipong W, Kongtud W, Tantatherdtam R (2013) Polyethylene green composites reinforced with cellulose fibers (coir and palm fibers): effect of fiber surface treatment and fiber content. J Adhes Sci Technol 27(12):1290–1300

    Article  Google Scholar 

  • Cisneros-López EO, González-López ME, Pérez-Fonseca AA, González-Núñez R, Rodrigue D, Robledo-Ortíz JR (2017) Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interf 24(1):35–53

    Article  Google Scholar 

  • Das G, Biswas S (2016a) Effect of fiber parameters on physical, mechanical and water absorption behaviour of coir fiber–epoxy composites. J Reinf Plast Compos 35(8):644–653

    Article  Google Scholar 

  • Das G, Biswas S (2016b) Physical, mechanical and water absorption behaviour of coir fiber reinforced epoxy composites filled with Al2O3 particulates. IOP Conf Ser Mater Sci Eng 115(1):012012

    Article  Google Scholar 

  • Davis D (2016) Fabrication and mechanical behaviour study of coconut coir based polymer composite. Int J Adv Res 4(4):1267–1272

    Article  Google Scholar 

  • de Carvalho Benini KCC, Brocks T, Montoro SR, Odila Hilário Cioffi M, Jacobus Cornelis Voorwald H (2017) Effect of fiber chemical treatment of nonwoven coconut fiber/epoxy composites adhesion obtained by RTM process. Polym Compos 38(11):2518–2527

    Article  Google Scholar 

  • de Farias JGG, Cavalcante RC, Canabarro BR, Viana HM, Scholz S, Simão RA (2017) Surface lignin removal on coir fibers by plasma treatment for improved adhesion in thermoplastic starch composites. Carbohydr Polym 165:429–436

    Article  Google Scholar 

  • de Oliveira PF, Marques M d FV (2014) Comparison between coconut and curaua fibers chemically treated for compatibility with PP matrixes. J Reinf Plast Compos 33(5):430–439

    Article  Google Scholar 

  • Dhal JP, Mishra SC (2013) Investigation of dielectric properties of a novel hybrid polymer composite using industrial and biowaste. J Polym Compos 1(1):22–27

    Google Scholar 

  • Diao C, Dowding T, Hemsri S, Parnas RS (2014) Toughened wheat gluten and treated coconut fiber composite. Compos A: Appl Sci Manuf 58:90–97

    Article  Google Scholar 

  • Dong Y, Ghataura A, Takagi H, Haroosh HJ, Nakagaito AN, Lau K-T (2014) Polylactic acid (PLA) biocomposites reinforced with coir fibres: evaluation of mechanical performance and multifunctional properties. Compos A: Appl Sci Manuf 63:76–84

    Article  Google Scholar 

  • Duan J, Wu H, Fu W, Hao M (2018) Mechanical properties of hybrid sisal/coir fibers reinforced polylactide biocomposites. Polym Compos 39:E188–E199

    Article  Google Scholar 

  • Frollini E, Bartolucci N, Sisti L, Celli A (2013) Poly (butylene succinate) reinforced with different lignocellulosic fibers. Ind Crop Prod 45:160–169

    Article  Google Scholar 

  • Guo F, Wang N, Cheng Q, Hou L, Liu J, Yu Y, Zhao Y (2016) Low-cost coir fiber composite with integrated strength and toughness. ACS Sustain Chem Eng 4(10):5450–5455

    Article  Google Scholar 

  • Hamouda T, Hassanin AH, Kilic A, Candan Z, Safa Bodur M (2017) Hybrid composites from coir fibers reinforced with woven glass fabrics: physical and mechanical evaluation. Polym Compos 38(10):2212–2220

    Article  Google Scholar 

  • Haque MM, Islam MN (2013) A study on the mechanical properties of urea-treated coir reinforced polypropylene composites. J Thermoplast Compos Mater 26(2):139–155

    Article  Google Scholar 

  • Haque MM, Ali ME, Hasan M, Islam MN, Kim H (2012a) Chemical treatment of coir fiber reinforced polypropylene composites. Ind Eng Chem Res 51(10):3958–3965

    Article  Google Scholar 

  • Haque MM, Islam MS, Islam MN (2012b) Preparation and characterization of polypropylene composites reinforced with chemically treated coir. J Polym Res 19(5):9847–9855

    Article  Google Scholar 

  • Hariprasad T, Dharmalingam G, Praveen Raj P (2013) A study of mechanical properties of banana–coir hybrid composite using experimental and fem techniques. J Mech Eng Sci 4:518–531

    Article  Google Scholar 

  • Hemsri S, Grieco K, Asandei AD, Parnas RS (2012) Wheat gluten composites reinforced with coconut fiber. Compos A: Appl Sci Manuf 43(7):1160–1168

    Article  Google Scholar 

  • Ibrahem RA (2016) Friction and wear behaviour of fibre/particles reinforced polyester composites. Int J Adv Mater Res 2:22–26

    Google Scholar 

  • Islam MS, Ahmad MB, Hasan M, Aziz SA, Jawaid M, Haafiz MKM, Zakaria SAH (2015a) Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. Bioresources 10(1):1394–1407

    Article  Google Scholar 

  • Islam MS, Hasbullah NAB, Hasan M, Talib ZA, Jawaid M, Haafiz MKM (2015b) Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Mater Today Commun 4:69–76

    Article  Google Scholar 

  • Islam MS, Talib ZA, Hasan M, Ramli I, Haafiz MKM, Jawaid M, Islam A, Inuwa IM (2017) Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polym Compos 38(3):583–587

    Article  Google Scholar 

  • Jayabal S, Velumani S, Navaneethakrishnan P, Palanikumar K (2013) Mechanical and machinability behaviors of woven coir fiber-reinforced polyester composite. Fibers Polym 14(9):1505–1514

    Article  Google Scholar 

  • Kakou CA, Essabir H, Bensalah M-O, Bouhfid R, Rodrigue D, Qaiss A (2015) Hybrid composites based on polyethylene and coir/oil palm fibers. J Reinf Plast Compos 34(20):1684–1697

    Article  Google Scholar 

  • Kumar Rao D, Chandra Gope P (2015) Fracture toughness of walnut particles (Juglans regia L.) and coconut fiber-reinforced hybrid biocomposite. Polym Compos 36(1):167–173

    Article  Google Scholar 

  • Kumar SMS, Duraibabu D, Subramanian K (2014) Studies on mechanical, thermal and dynamic mechanical properties of untreated (raw) and treated coconut sheath fiber reinforced epoxy composites. Mater Des 59:63–69

    Article  Google Scholar 

  • Lomelí-Ramírez MG, Kestur SG, Manríquez-González R, Iwakiri S, de Muniz GB, Flores-Sahagun TS (2014) Bio-composites of cassava starch-green coconut fiber: part II—structure and properties. Carbohydr Polym 102:576–583

    Article  Google Scholar 

  • Luz d, Santos F, Ramos FJHTV, Nascimento LFC, Ben-Hur da Silva Figueiredo A, Monteiro SN (2018) Critical length and interfacial strength of PALF and coir fiber incorporated in epoxy resin matrix. J Mater Res Technol 7(4):528–534

    Article  Google Scholar 

  • Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des (1980–2015) 52:251–257

    Article  Google Scholar 

  • Muthu J, Priscilla J, Odeshi A, Kuppen N (2018) Characterisation of coir fibre hybrid composites reinforced with clay particles and glass spheres. J Compos Mater 52(5):593–607

    Article  Google Scholar 

  • Narendar R, Dasan KP (2013) Effect of chemical treatment on the mechanical and water absorption properties of coir pith/nylon/epoxy sandwich composites. Int J Polym Anal Charact 18(5):369–376

    Article  Google Scholar 

  • Narendar R, Dasan KP (2015) Development of coir pith based hybrid composite panels with enhanced water resistant behavior. Environ Prog Sustain Energy 34(5):1481–1487

    Article  Google Scholar 

  • Narendar R, Priya Dasan K, Rajendran K (2018) Coir pith/nylon/epoxy hybrid composites and their thermal properties: Thermogravimetric analysis, thermal ageing, and heat deflection temperature. J Vinyl Addit Technol 24(4):297–303

    Article  Google Scholar 

  • Nelson E, Dagwa IM, Mudiare E (2015) Effect of Fiber length on the mechanical properties of hybrid Ceasar weed/coir reinforced polyester composite. Usak University J Mater Sci 4(2):29–36

    Article  Google Scholar 

  • Nuthong W, Uawongsuwan P, Pivsa-Art W, Hamada H (2013) Impact property of flexible epoxy treated natural fiber reinforced PLA composites. Energy Procedia 34:839–847

    Article  Google Scholar 

  • Obasi HC, Chaudhry AA, Ijaz K, Akhtar H, Malik MH (2018) Development of biocomposites from coir fibre and poly (caprolactone) by solvent casting technique. Polym Bull 75(5):1775–1787

    Article  Google Scholar 

  • Patil Y, Sharma S (2018) Effect of coir fiber reinforcement on mechanical properties of vulcanized natural rubber composites. Sci Eng Compos Mater 25(3):517–528

    Article  Google Scholar 

  • Pérez-Fonseca AA, Arellano M, Rodrigue D, González-Núñez R, Robledo-Ortíz JR (2016a) Effect of coupling agent content and water absorption on the mechanical properties of coir-agave fibers reinforced polyethylene hybrid composites. Polym Compos 37(10):3015–3024

    Article  Google Scholar 

  • Pérez-Fonseca AA, Robledo-Ortíz JR, González-Núñez R, Rodrigue D (2016b) Effect of thermal annealing on the mechanical and thermal properties of polylactic acid-cellulosic fiber biocomposites. J Appl Polym Sci 133(31):43750–43759

    Article  Google Scholar 

  • Prasad GLE, Gowda BSK, Velmurugan R (2017) A study on impact strength characteristics of coir polyester composites. Procedia Eng 173:771–777

    Article  Google Scholar 

  • Prasad N, Agarwal VK, Sinha S (2018) Hybridization effect of coir fiber on physico-mechanical properties of polyethylene-banana/coir fiber hybrid composites. Sci Eng Compos Mater 25(1):133–141

    Article  Google Scholar 

  • Prithivirajan R, Jayabal S, Bharathiraja G (2015) Bio-based composites from waste agricultural residues: mechanical and morphological properties. Cellul Chem Technol 49(1):65–68

    Google Scholar 

  • Prithivirajan R, Jayabal S, Kalayana Sundaram S, Pravin Kumar A (2016a) Hybrid bio composites from agricultural residues: mechanical and thickness swelling behavior. Cellulose 35(31):27–31

    Google Scholar 

  • Prithivirajan R, Jayabal S, Sundaram SK, Sangeetha V (2016b) Hybrid biocomposites from agricultural residues: mechanical, water absorption and tribological behaviors. J Polym Eng 36(7):663–671

    Article  Google Scholar 

  • Rajesh R, Ravichandran YD, Nambi Raj NA, Senthilkumar N (2014) Development of a biodegradable composite (hydroxyapatite-chitosan-coir pith) as a packing material. Polym-Plast Technol Eng 53(11):1105–1110

    Article  Google Scholar 

  • Ramírez MGL, Satyanarayana KG, Iwakiri S, de Muniz GB, Tanobe V, Flores-Sahagun TS (2011) Study of the properties of biocomposites. Part I. Cassava starch-green coir fibers from Brazil. Carbohydr Polym 86(4):1712–1722

    Article  Google Scholar 

  • Ramprasath R, Jayabal S, Kalyana Sundaram S, Bharathiraja G, Munde YS (2016) Investigation on impact behavior of rice husk impregnated Coir-Vinyl Ester composites. Macromol Symp 361(1):123–128

    Article  Google Scholar 

  • Rejeesh CR, Saju KK (2018) Effect of fire-retardant treatment on mechanical properties of medium-density coir composite boards. Wood Fiber Sci 50(1):113–118

    Article  Google Scholar 

  • Riyajan S-A, Tangboriboonrat P (2014) Novel composite biopolymers of sodium alginate/natural rubber/coconut waste for adsorption of Pb (II) ions. Polym Compos 35(5):1013–1021

    Article  Google Scholar 

  • Roy JK, Nousin Akter HU, Zaman KMA, Sultana S, Shahruzzaman NK et al (2014) Preparation and properties of coir fiber-reinforced ethylene glycol dimethacrylate-based composite. J Thermoplast Compos Mater 27(1):35–51

    Article  Google Scholar 

  • Sakthivel M, Vijayakumar S, Ramesh S (2014) Production and characterization of luffa/coir reinforced polypropylene composite. Procedia Mater Sci 5:739–745

    Article  Google Scholar 

  • Santos d, Cesar J, Siqueira RL, Vieira LMG, Freire RTS, Mano V, Panzera TH (2018) Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polym Test 67:533–544

    Article  Google Scholar 

  • Sarasini F, Tirillo J, Puglia D, Kenny JM, Dominici F, Santulli C, Tofani M, De Santis R (2015) Effect of different lignocellulosic fibres on poly (ε-caprolactone)-based composites for potential applications in orthotics. RSC Adv 5(30):23798–23809

    Article  Google Scholar 

  • Sari PS, Spatenka P, Jenikova Z, Grohens Y, Thomas S (2015) New type of thermoplastic bio composite: nature of the interface on the ultimate properties and water absorption. RSC Adv 5(118):97536–97546

    Article  Google Scholar 

  • Sathishkumar TP, Navaneethakrishnan P, Shankar S, Kumar J (2013) Mechanical properties of randomly oriented snake grass fiber with banana and coir fiber-reinforced hybrid composites. J Compos Mater 47(18):2181–2191

    Article  Google Scholar 

  • Saw SK, Sarkhel G, Choudhury A (2012) Preparation and characterization of chemically modified jute–coir hybrid fiber reinforced epoxy novolac composites. J Appl Polym Sci 125(4):3038–3049

    Article  Google Scholar 

  • Staffa LH, Agnelli JAM, de Souza ML, Bettini SHP (2017) Evaluation of interactions between compatibilizers and photostabilizers in coir fiber reinforced polypropylene composites. Polym Eng Sci 57(11):1179–1185

    Google Scholar 

  • Stalin B, Athijayamani A (2016) The performance of bio waste fibres reinforced polymer hybrid composite. Int J Mater Eng Innov 7(1):15–25

    Article  Google Scholar 

  • Suardana NPG, Lokantara IP, Lim JK (2011) Influence of water absorption on mechanical properties of coconut coir fiber/poly-lactic acid biocomposites. Mater Phys Mech 12(2):113–125

    Google Scholar 

  • Sun Z, Zhang L, Liang D, Xiao W, Lin J (2017) Mechanical and thermal properties of PLA biocomposites reinforced by coir fibers. Int J Polym Sci 2017:2178329. https://doi.org/10.1155/2017/2178329

    Article  Google Scholar 

  • Thakur K, Kalia S, Kaith BS, Pathania D, Kumar A, Thakur P, Knittel CE, Schauer CL, Totaro G (2016) The development of antibacterial and hydrophobic functionalities in natural fibers for fiber-reinforced composite materials. J Environ Chem Eng 4(2):1743–1752

    Article  Google Scholar 

  • Thye TK, Tahir MFBM, Ismail AR, Nor MJM (2012) Automotive noise insulation composite panel using natural fibres with different perforation areas. Appl Mech Mater 165:63–67

    Article  Google Scholar 

  • Ujianto O, Noviyanti R, Wijaya R, Ramadhoni B (2017) Effect of maleated natural rubber on tensile strength and compatibility of natural rubber/coconut coir composite. IOP Conf Ser Mater Sci Eng 223(1):012014

    Article  Google Scholar 

  • Valášek P, D’Amato R, Müller M, Ruggiero A (2018) Mechanical properties and abrasive wear of white/brown coir epoxy composites. Compos Part B 146:88–97

    Article  Google Scholar 

  • Vijayakumar S, Nilavarasan T, Usharani R, Karunamoorthy L (2014) Mechanical and microstructure characterization of Coconut spathe fibers and Kenaf bast fibers reinforced epoxy polymer matrix composites. Procedia Mater Sci 5:2330–2337

    Article  Google Scholar 

  • Viswanathan R, Gothandapani L (1999) Mechanical properties of coir pith particle board. Bioresour Technol 67(1):93–95

    Article  Google Scholar 

  • Wang J, Hu Y (2016) Novel particleboard composites made from coir fiber and waste Banana stem fiber. Waste Biomass Valoriz 7(6):1447–1458

    Article  Google Scholar 

  • Yao J, Ma L, Lu W, Tan H (2014) Tensile property analysis and prediction model building for coir rope reinforced unsaturated polyester composite. BioResources 10(1):697–708

    Google Scholar 

  • Zainudin ES, Yan LH, Haniffah WH, Jawaid M, Alothman OY (2014) Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym Compos 35(7):1418–1425

    Article  Google Scholar 

  • Zaman HU, Beg MDH (2014) Preparation, structure, and properties of the coir fiber/polypropylene composites. J Compos Mater 48(26):3293–3301

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Reddy, N. (2019). Composites from Coir Fibers. In: Sustainable Applications of Coir and Other Coconut By-products. Springer, Cham. https://doi.org/10.1007/978-3-030-21055-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21055-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21054-0

  • Online ISBN: 978-3-030-21055-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics