Advertisement

A Patient with Chronic Kidney Disease and Heart Failure with Preserved

  • Zubair Shah
  • James C. FangEmail author
Chapter
  • 146 Downloads

Abstract

The prevalence of heart failure with preserved ejection fraction (HFPEF) and chronic kidney disease (CKD) has increased over the past few decades. The coexistence of HFPEF and CKD is common. HFPEF patients with any degree of CKD are at increased risk of mortality and conversely cardiovascular causes are the most common reason for mortality in CKD patients. The interplay between CKD and HFPEF is complex due to bidirectional pathophysiological and clinical effects of one disease on the other, e.g. the cardiorenal syndrome (CRS). The cardio-renal syndrome is mediated and accentuated by several mechanisms including hemodynamic, neurohormonal, oxidative stress, inflammation and metabolic factors. Cardiovascular and kidney disease share similar risk factors such as age, hypertension, diabetes mellites, obesity, anemia and hyperkalemia. Due to lack of consensus approaches, the medical management of patients with concomitant HFPEF and CKD remains challenging. Adoption of preventative strategies, utilization of newer biomarkers to recognize early injury and collaboration between cardiologist and nephrologist are essential for management of this unique patient population.

Keywords

HFpEF Cardiorenal syndrome Chronic kidney disease 

References

  1. 1.
    Inker LA, Astor BC, Fox CH, et al. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for the evaluation and management of CKD. Am J Kidney Dis. 2014;63:713–35.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Chronic Kidney Disease Prognosis C, Matsushita K, van der Velde M, et al. Association of estimated glomerular filtration rate and albuminuria with all-cause and cardiovascular mortality in general population cohorts: a collaborative meta-analysis. Lancet. 2010;375:2073–81.CrossRefGoogle Scholar
  3. 3.
    Go AS, Chertow GM, Fan D, McCulloch CE, Hsu CY. Chronic kidney disease and the risks of death, cardiovascular events, and hospitalization. N Engl J Med. 2004;351:1296–305.CrossRefGoogle Scholar
  4. 4.
    Forman DE, Butler J, Wang Y, et al. Incidence, predictors at admission, and impact of worsening renal function among patients hospitalized with heart failure. J Am Coll Cardiol. 2004;43:61–7.CrossRefGoogle Scholar
  5. 5.
    Smith GL, Lichtman JH, Bracken MB, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47:1987–96.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Garg AX, Clark WF, Haynes RB, House AA. Moderate renal insufficiency and the risk of cardiovascular mortality: results from the NHANES I. Kidney Int. 2002;61:1486–94.PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Sarnak MJ. Cardiovascular complications in chronic kidney disease. Am J Kidney Dis. 2003;41:11–7.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Sarnak MJ, Levey AS, Schoolwerth AC, et al. Kidney disease as a risk factor for development of cardiovascular disease: a statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation. 2003;108:2154–69.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Schiffrin EL, Lipman ML, Mann JF. Chronic kidney disease: effects on the cardiovascular system. Circulation. 2007;116:85–97.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol. 2006;17:2034–47.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Redfield MM. Heart failure with preserved ejection fraction. N Engl J Med. 2016;375:1868–77.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Hogg K, Swedberg K, McMurray J. Heart failure with preserved left ventricular systolic function; epidemiology, clinical characteristics, and prognosis. J Am Coll Cardiol. 2004;43:317–27.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Casado J, Montero M, Formiga F, et al. Clinical characteristics and prognostic influence of renal dysfunction in heart failure patients with preserved ejection fraction. Eur J Intern Med. 2013;24:677–83.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Klein L, Massie BM, Leimberger JD, et al. Admission or changes in renal function during hospitalization for worsening heart failure predict postdischarge survival: results from the Outcomes of a Prospective Trial of Intravenous Milrinone for Exacerbations of Chronic Heart Failure (OPTIME-CHF). Circ Heart Fail. 2008;1:25–33.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Krumholz HM, Chen YT, Vaccarino V, et al. Correlates and impact on outcomes of worsening renal function in patients > or =65 years of age with heart failure. Am J Cardiol. 2000;85:1110–3.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    McAlister FA, Ezekowitz J, Tarantini L, et al. Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction: impact of the new Chronic Kidney Disease-Epidemiology Collaboration Group formula. Circ Heart Fail. 2012;5:309–14.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rusinaru D, Buiciuc O, Houpe D, Tribouilloy C. Renal function and long-term survival after hospital discharge in heart failure with preserved ejection fraction. Int J Cardiol. 2011;147:278–82.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Ather S, Chan W, Bozkurt B, et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Curtis JP, Sokol SI, Wang Y, et al. The association of left ventricular ejection fraction, mortality, and cause of death in stable outpatients with heart failure. J Am Coll Cardiol. 2003;42:736–42.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Lee DS, Gona P, Albano I, et al. A systematic assessment of causes of death after heart failure onset in the community: impact of age at death, time period, and left ventricular systolic dysfunction. Circ Heart Fail. 2011;4:36–43.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Ahmed A, Young JB, Love TE, Levesque R, Pitt B. A propensity-matched study of the effects of chronic diuretic therapy on mortality and hospitalization in older adults with heart failure. Int J Cardiol. 2008;125:246–53.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35:455–69.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Agarwal SK, Chambless LE, Ballantyne CM, et al. Prediction of incident heart failure in general practice: the Atherosclerosis Risk in Communities (ARIC) Study. Circ Heart Fail. 2012;5:422–9.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Smink PA, Lambers Heerspink HJ, Gansevoort RT, et al. Albuminuria, estimated GFR, traditional risk factors, and incident cardiovascular disease: the PREVEND (Prevention of Renal and Vascular Endstage Disease) study. Am J Kidney Dis. 2012;60:804–11.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Kottgen A, Russell SD, Loehr LR, et al. Reduced kidney function as a risk factor for incident heart failure: the atherosclerosis risk in communities (ARIC) study. J Am Soc Nephrol. 2007;18:1307–15.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Brouwers FP, de Boer RA, van der Harst P, et al. Incidence and epidemiology of new onset heart failure with preserved vs. reduced ejection fraction in a community-based cohort: 11-year follow-up of PREVEND. Eur Heart J. 2013;34:1424–31.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Fink HA, Ishani A, Taylor BC, et al. Screening for, monitoring, and treatment of chronic kidney disease stages 1 to 3: a systematic review for the U.S. Preventive Services Task Force and for an American College of Physicians Clinical Practice Guideline. Ann Intern Med. 2012;156:570–81.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Kim MK, Kim B, Lee JY, et al. Tissue Doppler-derived E/e’ ratio as a parameter for assessing diastolic heart failure and as a predictor of mortality in patients with chronic kidney disease. Korean J Intern Med. 2013;28:35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Levin A, Singer J, Thompson CR, Ross H, Lewis M. Prevalent left ventricular hypertrophy in the predialysis population: identifying opportunities for intervention. Am J Kidney Dis. 1996;27:347–54.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Shiba N, Shimokawa H. Chronic kidney disease and heart failure – Bidirectional close link and common therapeutic goal. J Cardiol. 2011;57:8–17.PubMedCrossRefGoogle Scholar
  31. 31.
    Ronco C. The cardiorenal syndrome: basis and common ground for a multidisciplinary patient-oriented therapy. Cardiorenal Med. 2011;1:3–4.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Ronco C, House AA, Haapio M. Cardiorenal syndrome: refining the definition of a complex symbiosis gone wrong. Intensive Care Med. 2008;34:957–62.PubMedCrossRefGoogle Scholar
  33. 33.
    Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52:1527–39.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Hung SC, Lai YS, Kuo KL, Tarng DC. Volume overload and adverse outcomes in chronic kidney disease: clinical observational and animal studies. J Am Heart Assoc. 2015;4.Google Scholar
  35. 35.
    Hall JE. Renal dysfunction, rather than nonrenal vascular dysfunction, mediates salt-induced hypertension. Circulation. 2016;133:894–906.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Fu Q, Cao L, Li H, Wang B, Li Z. Cardiorenal syndrome: pathophysiological mechanism, preclinical models, novel contributors and potential therapies. Chin Med J. 2014;127:3011–8.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Jonsson S, Agic MB, Narfstrom F, Melville JM, Hultstrom M. Renal neurohormonal regulation in heart failure decompensation. Am J Physiol Regul Integr Comp Physiol. 2014;307:R493–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Kitzman DW, Little WC, Brubaker PH, et al. Pathophysiological characterization of isolated diastolic heart failure in comparison to systolic heart failure. JAMA. 2002;288:2144–50.PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Collins AJ. Cardiovascular mortality in end-stage renal disease. Am J Med Sci. 2003;325:163–7.PubMedCrossRefGoogle Scholar
  40. 40.
    Chen J, Muntner P, Hamm LL, et al. The metabolic syndrome and chronic kidney disease in U.S. adults. Ann Intern Med. 2004;140:167–74.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    von Bibra H, Paulus WJ, St John Sutton M, Leclerque C, Schuster T, Schumm-Draeger PM. Quantification of diastolic dysfunction via the age dependence of diastolic function – impact of insulin resistance with and without type 2 diabetes. Int J Cardiol. 2015;182:368–74.CrossRefGoogle Scholar
  42. 42.
    Wan SH, Vogel MW, Chen HH. Pre-clinical diastolic dysfunction. J Am Coll Cardiol. 2014;63:407–16.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Witteles RM, Fowler MB. Insulin-resistant cardiomyopathy clinical evidence, mechanisms, and treatment options. J Am Coll Cardiol. 2008;51:93–102.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Fontes-Carvalho R, Ladeiras-Lopes R, Bettencourt P, Leite-Moreira A, Azevedo A. Diastolic dysfunction in the diabetic continuum: association with insulin resistance, metabolic syndrome and type 2 diabetes. Cardiovasc Diabetol. 2015;14:4.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Phan TT, Abozguia K, Nallur Shivu G, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54:402–9.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    El-Atat FA, Stas SN, McFarlane SI, Sowers JR. The relationship between hyperinsulinemia, hypertension and progressive renal disease. J Am Soc Nephrol. 2004;15:2816–27.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Fox CS, Matsushita K, Woodward M, et al. Associations of kidney disease measures with mortality and end-stage renal disease in individuals with and without diabetes: a meta-analysis. Lancet. 2012;380:1662–73.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ritz E, Orth SR. Nephropathy in patients with type 2 diabetes mellitus. N Engl J Med. 1999;341:1127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Boonman-de Winter LJ, Rutten FH, Cramer MJ, et al. High prevalence of previously unknown heart failure and left ventricular dysfunction in patients with type 2 diabetes. Diabetologia. 2012;55:2154–62.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Roberts AW, Clark AL, Witte KK. Review article: left ventricular dysfunction and heart failure in metabolic syndrome and diabetes without overt coronary artery disease – do we need to screen our patients? Diab Vasc Dis Res. 2009;6:153–63.PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Thomas MC, Cooper ME, Zimmet P. Changing epidemiology of type 2 diabetes mellitus and associated chronic kidney disease. Nat Rev Nephrol. 2016;12:73–81.PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Kristensen SL, Mogensen UM, Jhund PS, et al. Clinical and echocardiographic characteristics and cardiovascular outcomes according to diabetes status in patients with heart failure and preserved ejection fraction: a report from the I-Preserve trial (Irbesartan in heart failure with preserved ejection fraction). Circulation. 2017;135:724–35.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    MacDonald MR, Petrie MC, Varyani F, et al. Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J. 2008;29:1377–85.PubMedCrossRefGoogle Scholar
  54. 54.
    Aguilar D, Deswal A, Ramasubbu K, Mann DL, Bozkurt B. Comparison of patients with heart failure and preserved left ventricular ejection fraction among those with versus without diabetes mellitus. Am J Cardiol. 2010;105:373–7.PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Lindman BR, Davila-Roman VG, Mann DL, et al. Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol. 2014;64:541–9.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Banerjee S, Panas R. Diabetes and cardiorenal syndrome: understanding the “Triple Threat”. Hell J Cardiol. 2017;58:342–7.CrossRefGoogle Scholar
  57. 57.
    Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Yancy CW, Lopatin M, Stevenson LW, et al. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006;47:76–84.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fonarow GC, Stough WG, Abraham WT, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Steinberg BA, Zhao X, Heidenreich PA, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126:65–75.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Young JB, Abraham WT, Albert NM, et al. Relation of low hemoglobin and anemia to morbidity and mortality in patients hospitalized with heart failure (insight from the OPTIMIZE-HF registry). Am J Cardiol. 2008;101:223–30.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    O’Meara E, Clayton T, McEntegart MB, et al. Clinical correlates and consequences of anemia in a broad spectrum of patients with heart failure: results of the Candesartan in Heart Failure: Assessment of Reduction in Mortality and Morbidity (CHARM) Program. Circulation. 2006;113:986–94.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Felker GM, Shaw LK, Stough WG, O’Connor CM. Anemia in patients with heart failure and preserved systolic function. Am Heart J. 2006;151:457–62.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Anand I, McMurray JJ, Whitmore J, et al. Anemia and its relationship to clinical outcome in heart failure. Circulation. 2004;110:149–54.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Anand IS, Chandrashekhar Y, Wander GS, Chawla LS. Endothelium-derived relaxing factor is important in mediating the high output state in chronic severe anemia. J Am Coll Cardiol. 1995;25:1402–7.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Scrutinio D, Passantino A, Santoro D, Catanzaro R. The cardiorenal Anemia syndrome in systolic heart failure: prevalence, clinical correlates, and long-term survival. Eur J Heart Fail. 2011;13:61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Desai AS, Liu J, Pfeffer MA, et al. Incident hyperkalemia, hypokalemia, and clinical outcomes during spironolactone treatment of heart failure with preserved ejection fraction: analysis of the TOPCAT trial. J Card Fail. 2018;24:313–20.PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Go AS, Yang J, Ackerson LM, et al. Hemoglobin level, chronic kidney disease, and the risks of death and hospitalization in adults with chronic heart failure: the Anemia in Chronic Heart Failure: Outcomes and Resource Utilization (ANCHOR) Study. Circulation. 2006;113:2713–23.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Al-Ahmad A, Rand WM, Manjunath G, et al. Reduced kidney function and anemia as risk factors for mortality in patients with left ventricular dysfunction. J Am Coll Cardiol. 2001;38:955–62.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Herzog CA, Muster HA, Li S, Collins AJ. Impact of congestive heart failure, chronic kidney disease, and anemia on survival in the Medicare population. J Card Fail. 2004;10:467–72.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Anand IS, Kuskowski MA, Rector TS, et al. Anemia and change in hemoglobin over time related to mortality and morbidity in patients with chronic heart failure: results from Val-HeFT. Circulation. 2005;112:1121–7.PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    von Haehling S, van Veldhuisen DJ, Roughton M, et al. Anemia among patients with heart failure and preserved or reduced ejection fraction: results from the SENIORS study. Eur J Heart Fail. 2011;13:656–63.CrossRefGoogle Scholar
  73. 73.
    Westenbrink BD, Visser FW, Voors AA, et al. Anemia in chronic heart failure is not only related to impaired renal perfusion and blunted erythropoietin production, but to fluid retention as well. Eur Heart J. 2007;28:166–71.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jensen JD, Eiskjaer H, Bagger JP, Pedersen EB. Elevated level of erythropoietin in congestive heart failure relationship to renal perfusion and plasma renin. J Intern Med. 1993;233:125–30.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Nanas JN, Matsouka C, Karageorgopoulos D, et al. Etiology of anemia in patients with advanced heart failure. J Am Coll Cardiol. 2006;48:2485–9.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Silverberg DS, Wexler D, Blum M, et al. The use of subcutaneous erythropoietin and intravenous iron for the treatment of the anemia of severe, resistant congestive heart failure improves cardiac and renal function and functional cardiac class, and markedly reduces hospitalizations. J Am Coll Cardiol. 2000;35:1737–44.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Westenbrink BD, Voors AA, de Boer RA, et al. Bone marrow dysfunction in chronic heart failure patients. Eur J Heart Fail. 2010;12:676–84.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Weiss G, Goodnough LT. Anemia of chronic disease. N Engl J Med. 2005;352:1011–23.PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Thomas C, Thomas L. Anemia of chronic disease: pathophysiology and laboratory diagnosis. Lab Hematol. 2005;11:14–23.PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Drechsler C, Pilz S, Obermayer-Pietsch B, et al. Vitamin D deficiency is associated with sudden cardiac death, combined cardiovascular events, and mortality in haemodialysis patients. Eur Heart J. 2010;31:2253–61.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Mehrotra R, Kermah DA, Salusky IB, et al. Chronic kidney disease, hypovitaminosis D, and mortality in the United States. Kidney Int. 2009;76:977–83.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Ravani P, Malberti F, Tripepi G, et al. Vitamin D levels and patient outcome in chronic kidney disease. Kidney Int. 2009;75:88–95.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Wang AY, Lam CW, Sanderson JE, et al. Serum 25-hydroxyvitamin D status and cardiovascular outcomes in chronic peritoneal dialysis patients: a 3-y prospective cohort study. Am J Clin Nutr. 2008;87:1631–8.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Satyan S, Light RP, Agarwal R. Relationships of N-terminal pro-B-natriuretic peptide and cardiac troponin T to left ventricular mass and function and mortality in asymptomatic hemodialysis patients. Am J Kidney Dis. 2007;50:1009–19.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Voroneanu L, Siriopol D, Nistor I, et al. Superior predictive value for NTproBNP compared with high sensitivity cTnT in dialysis patients: a pilot prospective observational study. Kidney Blood Press Res. 2014;39:636–47.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Daniels LB, Maisel AS. Natriuretic peptides. J Am Coll Cardiol. 2007;50:2357–68.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    DeFilippi CR, Fink JC, Nass CM, Chen H, Christenson R. N-terminal pro-B-type natriuretic peptide for predicting coronary disease and left ventricular hypertrophy in asymptomatic CKD not requiring dialysis. Am J Kidney Dis. 2005;46:35–44.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Wang AY, Lam CW, Yu CM, et al. N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J Am Soc Nephrol. 2007;18:321–30.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Dierkes J, Domrose U, Westphal S, et al. Cardiac troponin T predicts mortality in patients with end-stage renal disease. Circulation. 2000;102:1964–9.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Mallamaci F, Zoccali C, Parlongo S, et al. Troponin is related to left ventricular mass and predicts all-cause and cardiovascular mortality in hemodialysis patients. Am J Kidney Dis. 2002;40:68–75.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Yndestad A, Landro L, Ueland T, et al. Increased systemic and myocardial expression of neutrophil gelatinase-associated lipocalin in clinical and experimental heart failure. Eur Heart J. 2009;30:1229–36.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Zografos T, Haliassos A, Korovesis S, Giazitzoglou E, Voridis E, Katritsis D. Association of neutrophil gelatinase-associated lipocalin with the severity of coronary artery disease. Am J Cardiol. 2009;104:917–20.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345:861–9.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Lewis EJ, Hunsicker LG, Clarke WR, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med. 2001;345:851–60.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lesogor A, Cohn JN, Latini R, et al. Interaction between baseline and early worsening of renal function and efficacy of renin-angiotensin-aldosterone system blockade in patients with heart failure: insights from the Val-HeFT study. Eur J Heart Fail. 2013;15:1236–44.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Schmieder RE, Delles C, Mimran A, Fauvel JP, Ruilope LM. Impact of telmisartan versus ramipril on renal endothelial function in patients with hypertension and type 2 diabetes. Diabetes Care. 2007;30:1351–6.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Davis BR, Kostis JB, Simpson LM, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118:2259–67.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Pitt B, Pfeffer MA, Assmann SF, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Haynes R, Lewis D, Emberson J, et al. Effects of lowering LDL cholesterol on progression of kidney disease. J Am Soc Nephrol. 2014;25:1825–33.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Alehagen U, Benson L, Edner M, Dahlstrom U, Lund LH. Association between use of statins and mortality in patients with heart failure and ejection fraction of >/=50. Circ Heart Fail. 2015;8:862–70.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Fukuta H, Goto T, Wakami K, Ohte N. The effect of statins on mortality in heart failure with preserved ejection fraction: a meta-analysis of propensity score analyses. Int J Cardiol. 2016;214:301–6.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Liu G, Zheng XX, Xu YL, Ru J, Hui RT, Huang XH. Meta-analysis of the effect of statins on mortality in patients with preserved ejection fraction. Am J Cardiol. 2014;113:1198–204.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Investigators ET, Chertow GM, Block GA, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367:2482–94.CrossRefGoogle Scholar
  104. 104.
    Di Lullo L, Floccari F, Santoboni A, et al. Progression of cardiac valve calcification and decline of renal function in CKD patients. J Nephrol. 2013;26:739–44.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377:2099.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Kosiborod M, Lam CSP, Kohsaka S, et al. Cardiovascular events associated with SGLT-2 inhibitors versus other glucose-lowering drugs: the CVD-REAL 2 study. J Am Coll Cardiol. 2018;71:2628–39.PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Whelton PK, Carey RM, Aronow WS, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J Am Coll Cardiol. 2017.Google Scholar
  109. 109.
    January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:e199–267.PubMedPubMedCentralGoogle Scholar
  110. 110.
    Anker SD, Comin Colet J, Filippatos G, et al. Ferric carboxymaltose in patients with heart failure and iron deficiency. N Engl J Med. 2009;361:2436–48.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Abraham WT, Adamson PB, Bourge RC, et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66.PubMedCrossRefGoogle Scholar
  112. 112.
    Grewal J, McKelvie RS, Persson H, et al. Usefulness of N-terminal pro-brain natriuretic Peptide and brain natriuretic peptide to predict cardiovascular outcomes in patients with heart failure and preserved left ventricular ejection fraction. Am J Cardiol. 2008;102:733–7.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    van Heerebeek L, Hamdani N, Falcao-Pires I, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Jhund PS, Claggett B, Packer M, et al. Independence of the blood pressure lowering effect and efficacy of the angiotensin receptor neprilysin inhibitor, LCZ696, in patients with heart failure with preserved ejection fraction: an analysis of the PARAMOUNT trial. Eur J Heart Fail. 2014;16:671–7.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Jhund PS, Claggett BL, Voors AA, et al. Elevation in high-sensitivity troponin T in heart failure and preserved ejection fraction and influence of treatment with the angiotensin receptor neprilysin inhibitor LCZ696. Circ Heart Fail. 2014;7:953–9.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Solomon SD, Zile M, Pieske B, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet. 2012;380:1387–95.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiovascular MedicineUniversity of Kansas School of MedicineKansas CityUSA
  2. 2.Cardiovascular Division, John and June B. Hartman Presidential Endowed Chair, Cardiovascular Service LineUniversity of Utah Health Sciences CenterSalt Lake CityUSA

Personalised recommendations