Skip to main content

Pathophysiology of Cardio-Renal Syndrome: Autonomic Mechanisms

  • Chapter
  • First Online:
  • 1040 Accesses

Abstract

Sympathetic activation occurs in the setting of renal dysfunction and is associated with alterations of sensory afferent renal nerve activity with inputs into central autonomic nuclei responsible for cardiovascular control and sympathetic outflow. In disease states such as heart failure and renal failure, increased renal sympathetic nerve activity can further worsen renal function, with a shift from inhibitory to “less inhibitory” (or potentially excitatory) reflex responses. Available evidence suggests that in the setting of renal disease, the normally sympatho-inhibitory renal reflex shifts towards a sympatho-excitatory reflex. This shift may then contribute to the development and maintenance of cardio-renal syndrome and also to the sympathetic overactivation present in heart failure. Renal nerve denervation, with particular emphasis on the afferent renal nerves, could attenuate or abrogate these maladaptive responses in heart failure. The potential for renal nerves to reinnervate may significantly impact the long-term efficacy of this procedure. Definitive testing in long-term outcome studies in humans should inform the role that renal nerve denervation may play in heart failure and cardio-renal syndrome.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moxon W. Case of extreme granular degeneration of the kidneys, without hypertrophy of the heart. Br Med J. 1872;1(598):637–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rowntree LG. The effects of experimental chronic passive congestion on renal function. Arch Intern Med. 1913;XI(2):121.

    Article  Google Scholar 

  3. Blake WD, Wégria R, Keating RP, Ward HP. Effect of increased renal venous pressure on renal function. Am J Physiol. 1949;157(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  4. Ronco C, Haapio M, House AA, Anavekar N, Bellomo R. Cardiorenal syndrome. J Am Coll Cardiol. 2008;52(19):1527–39.

    Article  PubMed  Google Scholar 

  5. Ronco C, Bellasi A, Di Lullo L. Cardiorenal syndrome: an overview. Adv Chronic Kidney Dis. 2018;25(5):382–90.

    Article  PubMed  Google Scholar 

  6. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dries DL, Exner DV, Domanski MJ, Greenberg B, Stevenson LW. The prognostic implications of renal insufficiency in asymptomatic and symptomatic patients with left ventricular systolic dysfunction. J Am Coll Cardiol. 2000;35(3):681–9.

    Article  CAS  PubMed  Google Scholar 

  8. Hillege HL, Nitsch D, Pfeffer MA, Swedberg K, McMurray JJ, Yusuf S, et al. Renal function as a predictor of outcome in a broad spectrum of patients with heart failure. Circulation. 2006;113(5):671–8.

    Article  PubMed  Google Scholar 

  9. Mahon NG, Blackstone EH, Francis GS, Starling RC, Young JB, Lauer MS. The prognostic value of estimated creatinine clearance alongside functional capacity in ambulatory patients with chronic congestive heart failure. J Am Coll Cardiol. 2002;40(6):1106–13.

    Article  CAS  PubMed  Google Scholar 

  10. Damman K, Valente MA, Voors AA, O’connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2013;35(7):455–69.

    Article  PubMed  Google Scholar 

  11. Heywood JT, Fonarow GC, Costanzo MR, Mathur VS, Wigneswaran JR, Wynne J, et al. High prevalence of renal dysfunction and its impact on outcome in 118,465 patients hospitalized with acute decompensated heart failure: a report from the ADHERE database. J Card Fail. 2007;13(6):422–30.

    Article  PubMed  Google Scholar 

  12. Bagshaw SM, Cruz DN, Aspromonte N, Daliento L, Ronco F, Sheinfeld G, et al. Epidemiology of cardio-renal syndromes: workgroup statements from the 7th ADQI Consensus Conference: Oxford University Press; 2010.

    Google Scholar 

  13. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012;60(12):1031–42.

    Article  PubMed  Google Scholar 

  14. Bongartz LG, Cramer MJ, Doevendans PA, Joles JA, Braam B. The severe cardiorenal syndrome:‘Guyton revisited’. Eur Heart J. 2004;26(1):11–7.

    Article  PubMed  Google Scholar 

  15. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Drugs. 1990;39(4):10–21.

    Article  PubMed  Google Scholar 

  16. Winton FR. The influence of venous pressure on the isolated mammalian kidney. J Physiol. 1931;72(1):49–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9(9):872–8.

    PubMed  Google Scholar 

  18. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    PubMed  PubMed Central  Google Scholar 

  19. Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.

    Article  PubMed  Google Scholar 

  20. Braam B, Cupples WA, Joles JA, Gaillard C. Systemic arterial and venous determinants of renal hemodynamics in congestive heart failure. Heart Fail Rev. 2012;17(2):161–75.

    Article  PubMed  Google Scholar 

  21. Testani JM, Damman K. Venous congestion and renal function in heart failure… it’s complicated. Eur J Heart Fail. 2013;15(6):599–601.

    Article  PubMed  Google Scholar 

  22. Uthoff H, Breidthardt T, Klima T, Aschwanden M, Arenja N, Socrates T, et al. Central venous pressure and impaired renal function in patients with acute heart failure. Eur J Heart Fail. 2011;13(4):432–9.

    Article  PubMed  Google Scholar 

  23. Dupont M, Mullens W, Finucan M, Taylor DO, Starling RC, Tang WW. Determinants of dynamic changes in serum creatinine in acute decompensated heart failure: the importance of blood pressure reduction during treatment. Eur J Heart Fail. 2013;15(4):433–40.

    Article  CAS  PubMed  Google Scholar 

  24. Dibona GF. Nervous kidney: interaction between renal sympathetic nerves and the renin-angiotensin system in the control of renal function. Hypertension. 2000;36(6):1083–8.

    Article  CAS  PubMed  Google Scholar 

  25. Charloux A, Piquard F, Doutreleau S, Brandenberger G, Geny B. Mechanisms of renal hyporesponsiveness to ANP in heart failure. Eur J Clin Investig. 2003;33(9):769–78.

    Article  CAS  Google Scholar 

  26. Giam B, Kaye DM, Rajapakse NW. Role of renal oxidative stress in the pathogenesis of the cardiorenal syndrome. Heart Lung Circ. 2016;25(8):874–80.

    Article  PubMed  Google Scholar 

  27. Iwata K, Matsuno K, Murata A, Zhu K, Fukui H, Ikuta K, et al. Up-regulation of NOX1/NADPH oxidase following drug-induced myocardial injury promotes cardiac dysfunction and fibrosis. Free Radic Biol Med. 2018;120:277–88.

    Article  CAS  PubMed  Google Scholar 

  28. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8.

    Article  PubMed  Google Scholar 

  29. Bleeke T, Zhang H, Madamanchi N, Patterson C, Faber JE. Catecholamine-induced vascular wall growth is dependent on generation of reactive oxygen species. Circ Res. 2004;94(1):37–45.

    Article  CAS  PubMed  Google Scholar 

  30. Liao J, Keiser JA, Scales WE, Kunkel SL, Kluger MJ. Role of epinephrine in TNF and IL-6 production from isolated perfused rat liver. Am J Physiol. 1995;268(4):R896–901.

    CAS  PubMed  Google Scholar 

  31. Ichiki T, Huntley BK, Harty GJ, Sangaralingham SJ, Burnett JC. Early activation of deleterious molecular pathways in the kidney in experimental heart failure with atrial remodeling. Physiol Rep. 2017;5(9):e13283.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Braam B. Renal endothelial and macula densa NOS: integrated response to changes in extracellular fluid volume. Am J Physiol. 1999;276(6):R1551–61.

    CAS  PubMed  Google Scholar 

  33. Verbrugge FH, Dupont M, Steels P, Grieten L, Malbrain M, Tang WHW, et al. Abdominal contributions to cardiorenal dysfunction in congestive heart failure. J Am Coll Cardiol. 2013;62(6):485–95.

    Article  PubMed  Google Scholar 

  34. Fallick C, Sobotka PA, Dunlap ME. Sympathetically mediated changes in capacitance: redistribution of the venous reservoir as a cause of decompensation. Circ Heart Fail. 2011;4(5):669–75.

    Article  PubMed  Google Scholar 

  35. Floras JS, Ponikowski P. The sympathetic/parasympathetic imbalance in heart failure with reduced ejection fraction. Eur Heart J. 2015;36(30):1974–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Florea VG, Cohn JN. The autonomic nervous system and heart failure. Circ Res. 2014;114(11):1815–26.

    Article  CAS  PubMed  Google Scholar 

  37. Dunlap ME, Bhardwaj A, Hauptman PJ. Autonomic modulation in heart failure: ready for prime time? Curr Cardiol Rep. 2015;17(11):103.

    Article  PubMed  Google Scholar 

  38. Bhardwaj A, Dunlap ME. Autonomic dysregulation as a therapeutic target for acute HF. Curr Treat Options Cardiovasc Med. 2015;17(10):43.

    Article  Google Scholar 

  39. Marfurt CF, Echtenkamp SF. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia. J Comp Neurol. 1991;311(3):389–404.

    Article  CAS  PubMed  Google Scholar 

  40. Solano-Flores LP, Rosas-Arellano MP, Ciriello J. Fos induction in central structures after afferent renal nerve stimulation. Brain Res. 1997;753(1):102–19.

    Article  CAS  PubMed  Google Scholar 

  41. Wyss JM, Donovan MK. A direct projection from the kidney to the brainstem. Brain Res. 1984;298(1):130–4.

    Article  CAS  PubMed  Google Scholar 

  42. Nishi EE, Martins BS, Milanez MI, Lopes NR, de Melo JF Jr, Pontes RB, et al. Stimulation of renal afferent fibers leads to activation of catecholaminergic and non-catecholaminergic neurons in the medulla oblongata. Auton Neurosci. 2017;204:48–56.

    Article  CAS  PubMed  Google Scholar 

  43. Goodwill VS, Terrill C, Hopewood I, Loewy AD, Knuepfer MM. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats. Auton Neurosci. 2017;204:35–47.

    Article  CAS  PubMed  Google Scholar 

  44. Kopp UC, Cicha MZ, Smith LA, Mulder J, Hokfelt T. Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of α1-and α2-adrenoceptors on renal sensory nerve fibers. Am J Physiol. 2007;293(4):R1561–72.

    CAS  Google Scholar 

  45. Kopp UC. Neural control of renal function. In: Colloquium Series on Integrated Systems Physiology: From Molecule to Function to Disease. San Rafael: Morgan & Claypool Life Sciences; 2018. p. 1–106.

    Google Scholar 

  46. Norvell JE, Anderson JM. Assessment of possible parasympathetic innervation of the kidney. J Auton Nerv Syst. 1983;8(3):291–4.

    Article  CAS  PubMed  Google Scholar 

  47. van Amsterdam WA, Blankestijn PJ, Goldschmeding R, Bleys RL. The morphological substrate for renal denervation: nerve distribution patterns and parasympathetic nerves. A post-mortem histological study. Ann Anat-Anat Anz. 2016;204:71–9.

    Article  Google Scholar 

  48. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, et al. Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol. 2014;64(7):635–43.

    Article  PubMed  Google Scholar 

  49. Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Kolodgie F, et al. Anatomical distribution of human renal sympathetic nerves: pathologic study. J Am Coll Cardiol. 2014;63(12. Supplement):A2151.

    Article  Google Scholar 

  50. Kopp UC. Role of renal sensory nerves in physiological and pathophysiological conditions. Am J Physiol. 2014;308(2):R79–95.

    Google Scholar 

  51. Barajas L, Müller J. The innervation of the juxtaglomerular apparatus and surrounding tubules: a quantitative analysis by serial section electron microscopy. J Ultrastruct Res. 1973;43(1–2):107–32.

    Article  CAS  PubMed  Google Scholar 

  52. Dibona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.

    Article  CAS  PubMed  Google Scholar 

  53. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71(3):659–82.

    Article  CAS  PubMed  Google Scholar 

  54. Recordati G, Moss NG, Genovesi S, Rogenes P. Renal chemoreceptors. J Auton Nerv Syst. 1981;3(2–4):237–51.

    Article  CAS  PubMed  Google Scholar 

  55. DiBona GF, Sawin LL. Renal nerves in renal adaptation to dietary sodium restriction. Am J Physiol. 1983;245(3):F322–8.

    CAS  PubMed  Google Scholar 

  56. Kopp U, Bradley T, Hjemdahl P. Renal venous outflow and urinary excretion of norepinephrine, epinephrine, and dopamine during graded renal nerve stimulation. Am J Physiol. 1983;244(1):E52–60.

    CAS  PubMed  Google Scholar 

  57. Schwartz DD, Malik KU. Renal periarterial nerve stimulation-induced vasoconstriction at low frequencies is primarily due to release of a purinergic transmitter in the rat. J Pharmacol Exp Ther. 1989;250(3):764–71.

    CAS  PubMed  Google Scholar 

  58. Vonend O, Okonek A, Stegbauer J, Habbel S, Quack I, Rump LC. Renovascular effects of sympathetic cotransmitters ATP and NPY are age-dependent in spontaneoulsy hypertensive rats. Cardiovasc Res. 2005;66(2):345–52.

    Article  CAS  PubMed  Google Scholar 

  59. Loesch A, Unwin R, Gandhi V, Burnstock G. Sympathetic nerve varicosities in close apposition to basolateral membranes of collecting duct epithelial cells of rat kidney. Nephron Physiol. 2009;113(3):p15–21.

    Article  PubMed  Google Scholar 

  60. Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev. 2007;59(3):251–87.

    Article  CAS  PubMed  Google Scholar 

  61. Navar LG, Nishiyama A. Intrarenal formation of angiotensin II. In: The renin-angiotensin system and progression of renal diseases. Basel: Karger Publishers; 2001. p. 1–15.

    Google Scholar 

  62. Navar LG, Nishiyama A. Why are angiotensin concentrations so high in the kidney? Curr Opin Nephrol Hypertens. 2004;13(1):107–15.

    Article  CAS  PubMed  Google Scholar 

  63. Navar LG, Kobori H, Prieto-Carrasquero M. Intrarenal angiotensin II and hypertension. Curr Hypertens Rep. 2003;5(2):135–43.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Navar LG. The role of the kidneys in hypertension. J Clin Hypertens. 2005;7(9):542–9.

    Article  CAS  Google Scholar 

  65. Imig JD, Navar GL, Zou L-X, O’Reilly KC, Allen PL, Kaysen JH, et al. Renal endosomes contain angiotensin peptides, converting enzyme, and AT1A receptors. Am J Physiol. 1999;277(2):F303–11.

    CAS  PubMed  Google Scholar 

  66. Kopp UC, Cicha MZ, Smith LA, Hökfelt T. Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation. Am J Physiol. 2001;281(1):R279–90.

    CAS  Google Scholar 

  67. Gontijo JR, Smith LA, Kopp UC. CGRP activates renal pelvic substance P receptors by retarding substance P metabolism. Hypertension. 1999;33(1):493–8.

    Article  CAS  PubMed  Google Scholar 

  68. Geppetti P. Sensory neuropeptide release by bradykinin: mechanisms and pathophysiological implications. Regul Pept. 1993;47(1):1–23.

    Article  CAS  PubMed  Google Scholar 

  69. Kopp UC, Farley DM, Cicha MZ, Smith LA. Activation of renal mechanosensitive neurons involves bradykinin, protein kinase C, PGE2, and substance P. Am J Physiol. 2000;278(4):R937–46.

    CAS  Google Scholar 

  70. Kopp UC, Farley DM, Smith LA. Bradykinin-mediated activation of renal sensory neurons due to prostaglandin-dependent release of substance P. Am J Physiol. 1997;272(6):R2009–16.

    CAS  PubMed  Google Scholar 

  71. Barry EF, Johns EJ. Intrarenal bradykinin elicits reno-renal reflex sympatho-excitation and renal nerve-dependent fluid retention. Acta Physiol. 2015;213(3):731–9.

    Article  CAS  Google Scholar 

  72. Day TA, Ciriello J. Effects of renal receptor activation on neurosecretory vasopressin cells. Am J Physiol. 1987;253(2):R234–41.

    CAS  PubMed  Google Scholar 

  73. Kopp UC, Cicha MZ, Smith LA. PGE2 increases release of substance P from renal sensory nerves by activating the cAMP-PKA transduction cascade. Am J Physiol. 2002;282(6):R1618–27.

    CAS  Google Scholar 

  74. Nicol GD, Cui M. Enhancement by prostaglandin E2 of bradykinin activation of embryonic rat sensory neurones. J Physiol. 1994;480(3):485–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bonvalet JP, Pradelles P, Farman N. Segmental synthesis and actions of prostaglandins along the nephron. Am J Physiol. 1987;253(3):F377–87.

    CAS  PubMed  Google Scholar 

  76. Kopp UC, Cicha MZ, Smith LA. Endogenous angiotensin modulates PGE2-mediated release of substance P from renal mechanosensory nerve fibers. Am J Physiol. 2002;282(1):R19–30.

    CAS  Google Scholar 

  77. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9.

    Article  PubMed  Google Scholar 

  78. DiBona GF, Jones SY, Sawin LL. Effect of endogenous angiotensin II on renal nerve activity and its arterial baroreflex regulation. Am J Physiol. 1996;271(2):R361–7.

    CAS  PubMed  Google Scholar 

  79. Kopp UC, Cicha MZ, Smith LA. Impaired responsiveness of renal mechanosensory nerves in heart failure: role of endogenous angiotensin. Am J Physiol. 2003;284(1):R116–24.

    CAS  Google Scholar 

  80. Dibner-Dunlap ME, Thames MD. Baroreflex control of renal sympathetic nerve activity is preserved in heart failure despite reduced arterial baroreceptor sensitivity. Circ Res. 1989;65(6):1526–35.

    Article  CAS  PubMed  Google Scholar 

  81. Dibner-Dunlap ME, Thames M. Control of sympathetic nerve activity by vagal mechanoreflexes is blunted in heart failure. Circulation. 1992;86(6):1929–34.

    Article  CAS  PubMed  Google Scholar 

  82. Recordati G, Genovesi S, Cerati D. Renorenal reflexes in the rat elicited upon stimulation of renal chemoreceptors. J Auton Nerv Syst. 1982;6(2):127–42.

    Article  CAS  PubMed  Google Scholar 

  83. Campese VM, Kogosov E, Koss M. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am J Kidney Dis. 1995;26(5):861–5.

    Article  CAS  PubMed  Google Scholar 

  84. Felder RB. Excitatory and inhibitory interactions among renal a cardiovascular afferent nerves in dorsomedial medulla. Am J Physiol. 1986;250(4):R580–8.

    CAS  PubMed  Google Scholar 

  85. Calaresu FR, Ciriello J. Renal afferent nerves affect discharge rate of medullary and hypothalamic single units in the cat. J Auton Nerv Syst. 1981;3(2–4):311–20.

    Article  CAS  PubMed  Google Scholar 

  86. Coote JH. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol. 2005;90(2):169–73.

    Article  CAS  PubMed  Google Scholar 

  87. Xu B, Zheng H, Liu X, Patel KP. Activation of afferent renal nerves modulates RVLM-projecting PVN neurons. Am J Physiol. 2015;308(9):H1103–11.

    CAS  Google Scholar 

  88. Booth LC, May CN, Yao ST. The role of the renal afferent and efferent nerve fibers in heart failure. Front Physiol. 2015;6. [cited 2019 Jan 7]. Available from: https://doi.org/10.3389/fphys.2015.00270.

  89. Zheng H, Patel KP. Integration of renal sensory afferents at the level of the paraventricular nucleus dictating sympathetic outflow. Auton Neurosci. 2017;204:57–64.

    Article  PubMed  Google Scholar 

  90. Tang WW, Dunlap ME. Reconsidering renal sympathetic denervation for heart failure. JACC: Basic Transl Sci. 2017;2:282–4.

    Google Scholar 

  91. Sobotka PA, Krum H, Böhm M, Francis DP, Schlaich MP. The role of renal denervation in the treatment of heart failure. Curr Cardiol Rep. 2012;14(3):285–92.

    Article  PubMed  Google Scholar 

  92. Nozawa T, Igawa A, Fujii N, Kato B, Yoshida N, Asanoi H, et al. Effects of long-term renal sympathetic denervation on heart failure after myocardial infarction in rats. Heart Vessel. 2002;16(2):51–6.

    Article  Google Scholar 

  93. Hu J, Li Y, Cheng W, Yang Z, Wang F, Lv P, et al. A comparison of the efficacy of surgical renal denervation and pharmacologic therapies in post-myocardial infarction heart failure. PLoS One. 2014;9(5):e96996.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Hu J, Yan Y, Zhou Q, Ji M, Niu C, Hou Y, et al. Effects of renal denervation on the development of post-myocardial infarction heart failure and cardiac autonomic nervous system in rats. Int J Cardiol. 2014;172(3):e414–6.

    Article  PubMed  Google Scholar 

  95. Li Z-Z, Jiang H, Chen D, Liu Q, Geng J, Guo J-Q, et al. Renal sympathetic denervation improves cardiac dysfunction in rats with chronic pressure overload. Physiol Res. 2015;64(5):653–62.

    CAS  PubMed  Google Scholar 

  96. Liu Q, Zhang Q, Wang K, Wang S, Lu D, Li Z, et al. Renal denervation findings on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sci Rep. 2015;5:18582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Sobotka PA, Mahfoud F, Schlaich MP, Hoppe UC, Böhm M, Krum H. Sympatho-renal axis in chronic disease. Clin Res Cardiol. 2011;100(12):1049–57.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Liao S-Y, Zhen Z, Liu Y, Au K-W, Lai W-H, Tsang A, et al. Improvement of myocardial function following catheter-based renal denervation in heart failure. JACC Basic Transl Sci. 2017;2(3):270–81.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Esler MD, Böhm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401.

    Article  CAS  PubMed  Google Scholar 

  101. Hopper I, Gronda E, Hoppe UC, Rundqvist B, Marwick TH, Shetty S, et al. Sympathetic response and outcomes following renal denervation in patients with chronic heart failure: 12-month outcomes from the SYMPLICITY HF Feasibility Study. J Card Fail. 2017;23(9):702–7.

    Article  PubMed  Google Scholar 

  102. Davies JE, Manisty CH, Petraco R, Barron AJ, Unsworth B, Mayet J, et al. First-in-man safety evaluation of renal denervation for chronic systolic heart failure: primary outcome from REACH-Pilot study. Int J Cardiol. 2013;162(3):189–92.

    Article  PubMed  Google Scholar 

  103. Gazdar AF, Dammin GJ. Neural degeneration and regeneration in human renal transplants. N Engl J Med. 1970;283(5):222–4.

    Article  CAS  PubMed  Google Scholar 

  104. Mulder J, Hökfelt T, Knuepfer MM, Kopp UC. Renal sensory and sympathetic nerves reinnervate the kidney in a similar time-dependent fashion after renal denervation in rats. Am J Physiol. 2013;304(8):R675–82.

    CAS  Google Scholar 

  105. Booth LC, Nishi EE, Yao ST, Ramchandra R, Lambert GW, Schlaich MP, et al. Reinnervation of renal afferent and efferent nerves at 5.5 and 11 months after catheter-based radiofrequency renal denervation in sheep. Hypertension. 2015;65(2):393–400.

    Article  CAS  PubMed  Google Scholar 

  106. Grisk O. Renal denervation and hypertension-The need to investigate unintended effects and neural control of the human kidney. Auton Neurosci. 2017;204:119–25.

    Article  PubMed  Google Scholar 

  107. Kline RL, Mercer PF. Functional reinnervation and development of supersensitivity to NE after renal denervation in rats. Am J Physiol. 1980;238(5):R353–8.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Dunlap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gunawardena, D.R.S., Dunlap, M.E. (2020). Pathophysiology of Cardio-Renal Syndrome: Autonomic Mechanisms. In: Tang, W., Verbrugge, F., Mullens, W. (eds) Cardiorenal Syndrome in Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-030-21033-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21033-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21032-8

  • Online ISBN: 978-3-030-21033-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics