Advertisement

Mechanisms of Cardiorenal Syndrome: From Molecular Pathways to Novel Therapeutics

  • Tomoki Ichiki
  • Yang Chen
  • John C. BurnettJrEmail author
Chapter
  • 136 Downloads

Abstract

Cardiorenal syndrome (CRS) in heart failure (HF) is the imbalance of the compensatory actions of the renoprotective natriuretic peptide (NP) system and the pathophysiologic actions of an activated renin-angiotensin-aldosterone system (RAAS), which increases the risk of progressive HF, death and rehospitalization. Kidney injury through the activation of deleterious molecular pathways involves inflammatory, pro-fibrotic, and pro-apoptotic molecular pathways, which was observed in our large animal model of HF, suggesting that a novel therapeutic for HF could target kidney injury to prevent and/or treat CRS and acute kidney injury (AKI). Further, urinary C-type NP (CNP) is activated during AKI and may be an effective urinary biomarker for CRS and AKI predicting adverse outcomes in HF. Since NP therapeutics have shown the renal protective actions, CRRL269, a designer NP was developed as a novel therapeutic for CRS and acute kidney injury (AKI). CRRL269 possesses renal enhancing properties with RAAS suppression and less hypotension than native NPs, thus representing a new and innovative drug for renoprotection in HF. The combination of using NP urinary biomarkers and designer NP therapeutics may provide the opportunity to reduce the burden of CRS in HF.

Keywords

Heart failure Cardiorenal syndrome Natriuretic peptides Renin-angiotensin-aldosterone system Kidney injury Urinary C-type natriuretic peptide Designer natriuretic peptide 

References

  1. 1.
    Braunwald E. Heart failure. JACC Heart Fail. 2013;1:1–20.CrossRefGoogle Scholar
  2. 2.
    Damman K, Valente MA, Voors AA, O'Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35:455–69.CrossRefGoogle Scholar
  3. 3.
    Mann DL, Bristow MR. Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation. 2005;111:2837–49.CrossRefGoogle Scholar
  4. 4.
    Yang T, Xu C. Physiology and pathophysiology of the intrarenal renin-angiotensin system: an update. J Am Soc Nephrol. 2017;28:1040–9.CrossRefGoogle Scholar
  5. 5.
    McMurray JJ, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau J, Shi VC, Solomon SD, Swedberg K, Zile MR, PARADIGM-HF Committees and Investigators. Dual angiotensin receptor and neprilysin inhibition as an alternative to angiotensin-converting enzyme inhibition in patients with chronic systolic heart failure: rationale for and design of the prospective comparison of ARNI with ACEI to determine impact on global mortality and morbidity in heart failure trial (PARADIGM-HF). Eur J Heart Fail. 2013;15:1062–73.CrossRefGoogle Scholar
  6. 6.
    Packer M, McMurray JJ, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, Rouleau JL, Shi VC, Solomon SD, Swedberg K, Zile M, Andersen K, Arango JL, Arnold JM, Belohlavek J, Bohm M, Boytsov S, Burgess LJ, Cabrera W, Calvo C, Chen CH, Dukat A, Duarte YC, Erglis A, Fu M, Gomez E, Gonzalez-Medina A, Hagege AA, Huang J, Katova T, Kiatchoosakun S, Kim KS, Kozan O, Llamas EB, Martinez F, Merkely B, Mendoza I, Mosterd A, Negrusz-Kawecka M, Peuhkurinen K, Ramires FJ, Refsgaard J, Rosenthal A, Senni M, Sibulo AS Jr, Silva-Cardoso J, Squire IB, Starling RC, Teerlink JR, Vanhaecke J, Vinereanu D, Wong RC. Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation. 2015;131:54–61.CrossRefGoogle Scholar
  7. 7.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, Young JB, Tang WH. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53:589–96.CrossRefGoogle Scholar
  8. 8.
    Ichiki T, Huntley BK, Harty GJ, Sangaralingham SJ, Burnett JC Jr. Early activation of deleterious molecular pathways in the kidney in experimental heart failure with atrial remodeling. Physiol Rep. 2017;5(9):e13283.CrossRefGoogle Scholar
  9. 9.
    Luchner A, Stevens TL, Borgeson DD, Redfield MM, Bailey JE, Sandberg SM, Heublein DM, Burnett JC Jr. Angiotensin II in the evolution of experimental heart failure. Hypertension. 1996;28:472–7.CrossRefGoogle Scholar
  10. 10.
    Haneda M, Kikkawa R, Maeda S, Togawa M, Koya D, Horide N, Kajiwara N, Shigeta Y. Dual mechanism of angiotensin II inhibits ANP-induced mesangial cGMP accumulation. Kidney Int. 1991;40:188–94.CrossRefGoogle Scholar
  11. 11.
    Stevens TL, Burnett JC Jr, Kinoshita M, Matsuda Y, Redfield MM. A functional role for endogenous atrial natriuretic peptide in a canine model of early left ventricular dysfunction. J Clin Invest. 1995;95:1101–8.CrossRefGoogle Scholar
  12. 12.
    Marguiles K, Heublein DM, Perrella M, Burnett JC Jr. ANF-mediated renal cGMP generation in congestive heart failure. Am J Phys. 1991;260:F562–8.CrossRefGoogle Scholar
  13. 13.
    McKie PM, Cataliotti A, Huntley BK, Martin FL, Olson TM, Burnett JC Jr. A human atrial natriuretic peptide gene mutation reveals a novel peptide with enhanced blood pressure-lowering, renal-enhancing, and aldosterone-suppressing actions. J Am Coll Cardiol. 2009;54:1024–32.CrossRefGoogle Scholar
  14. 14.
    McKie P, Burnett JC Jr. NT-proBNP: the gold standard biomarker in heart failure. J Am Coll Cardiol. 2016;6:2437–9.CrossRefGoogle Scholar
  15. 15.
    Mattingly MT, Brandt RR, Heublein DM, Wei CM, Nir A, Burnett JC Jr. Presence of C-type natriuretic peptide in human kidney and urine. Kidney Int. 1994;46:744–7.CrossRefGoogle Scholar
  16. 16.
    Dean AD, Greenwald JE. Regulation of C-type natriuretic peptide (CNP) in the kidney. J Am Soc Nephrol. 1993;4(3):436.Google Scholar
  17. 17.
    Zakeri R, Sangaralingham SJ, Sandberg S, Heublein DM, Scott C, Burnett JC Jr. Urinary C-type natriuretic peptide. JACC Heart Fail. 2013;1:170–7.CrossRefGoogle Scholar
  18. 18.
    Sangaralingham SJ, Heublein DM, Grande JP, Cataliotti A, Rule AD, McKie PM, Martin FL, Burnett JC Jr. Urinary C-type natriuretic peptide excretion: a potential novel biomarker for renal fibrosis during aging. Am J Physiol Renal Physiol. 2011;301:F943–52.CrossRefGoogle Scholar
  19. 19.
    Zakeri R, Burnett JC Jr, Sangaralingham SJ. Urinary C-type natriuretic peptide: an emerging biomarker for heart failure and renal remodeling. Clin Chim Acta. 2015;443C:108–13.CrossRefGoogle Scholar
  20. 20.
    Feller SM, Gagelmann M, Forssmann WG. Urodilatin: a newly described member of the ANP family. Trends Pharmacol Sci. 1989;10:93–4.CrossRefGoogle Scholar
  21. 21.
    Abassi ZA, Golomb E, Agbaria R, Roller PP, Tate J, Keiser HR. Hydrolysis of iodine labelled urodilatin and ANP by recombinant neutral endopeptidase EC. 3.4.24.11. Br J Pharmacol. 1994;113:204–8.CrossRefGoogle Scholar
  22. 22.
    Dean AD, Vehaskari VM, Greenwald JE. Synthesis and localization of C-type natriuretic peptide in mammalian kidney. Am J Physiol. 1994;266:F491–6.PubMedGoogle Scholar
  23. 23.
    Meems LMG, Burnett JC Jr. Innovative therapeutics: Designer natriuretic peptides. JACC Basic Transl Sci. 2016;1:557–67.CrossRefGoogle Scholar
  24. 24.
    Chen Y, Harty GJ, Huntley BK, Iyer SR, Heublein DM, Harders GE, Meems L, Pan S, Sangaralingham SJ, Ichiki T, Burnett JC Jr. Crrl269: a novel designer and renal-enhancing pGC-A peptide activator. Am J Physiol Regul Integr Comp Physiol. 2018;314:R407–14.CrossRefGoogle Scholar
  25. 25.
    Chen Y, Burnett JC. Particulate guanylyl cyclase a/cgmp signaling pathway in the kidney: physiologic and therapeutic indications. Int J Mol Sci. 2018;19:1006–14.CrossRefGoogle Scholar
  26. 26.
    Light DB, Corbin JD, Stanton BA. Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature. 1990;344:336–9.CrossRefGoogle Scholar
  27. 27.
    Scavone C, Scanlon C, McKee M, Nathanson JA. Atrial natriuretic peptide modulates sodium and potassium-activated adenosine triphosphatase through a mechanism involving cyclic GMP and cyclic GMP-dependent protein kinase. J Pharmacol Exp Ther. 1995;272:1036–43.PubMedGoogle Scholar
  28. 28.
    McKie PM, Cataliotti A, Lahr BD, et al. The prognostic value of N-terminal pro-B-typenatriuretic peptide for death and cardiovascular events in healthy normal and stage A/B heart failure subjects. J Am Coll Cardiol. 2010;55:2140–2147, 2010.CrossRefGoogle Scholar
  29. 29.
    Sezai A, Hata M, Niino T, Yoshitake I, Unosawa S, Wakui S, Kimura H, Shiono M, Takayama T, Hirayama A. Results of low-dose human atrial natriuretic peptide infusion in nondialysis patients with chronic kidney disease undergoing coronary artery bypass grafting: the NU-HIT (Nihon University working group study of low-dose HANP Infusion Therapy during cardiac surgery) trial for CKD. J Am Coll Cardiol. 2011;58:897–903.CrossRefGoogle Scholar
  30. 30.
    Mentzer RM Jr, Oz MC, Sladen RN, Graeve AH, Hebeler RF Jr, Luber JM Jr, Smedira NG. Effects of perioperative nesiritide in patients with left ventricular dysfunction undergoing cardiac surgery:the NAPA Trial. J Am Coll Cardiol. 2007;49:716–26.CrossRefGoogle Scholar
  31. 31.
    O'Connor CM, Starling RC, Hernandez AF, Armstrong PW, Dickstein K, Hasselblad V, Heizer GM, Komajda M, Massie BM, McMurray JJ, Nieminen MS, Reist CJ, Rouleau JL, Swedberg K, Adams KF Jr, Anker SD, Atar D, Battler A, Botero R, Bohidar NR, Butler J, Clausell N, Corbalan R, Costanzo MR, Dahlstrom U, Deckelbaum LI, Diaz R, Dunlap ME, Ezekowitz JA, Feldman D, Felker GM, Fonarow GC, Gennevois D, Gottlieb SS, Hill JA, Hollander JE, Howlett JG, Hudson MP, Kociol RD, Krum H, Laucevicius A, Levy WC, Mendez GF, Metra M, Mittal S, Oh BH, Pereira NL, Ponikowski P, Tang WH, Tanomsup S, Teerlink JR, Triposkiadis F, Troughton RW, Voors AA, Whellan DJ, Zannad F, Califf RM. Effect of nesiritide in patients with acute decompensated heart failure. N Engl J Med. 2011;365:32–43.CrossRefGoogle Scholar
  32. 32.
    Vaduganathan M, Butler J, Pitt B, Gheorghiade M. Contemporary drug development in heart failure: call for hemodynamically neutral therapies. Circ Heart Fail. 2015;8:826–31.CrossRefGoogle Scholar
  33. 33.
    Packer M, O'Connor C, McMurray JJV, Wittes J, Abraham WT, Anker SD, Dickstein K, Filippatos G, Holcomb R, Krum H, Maggioni AP, Mebazaa A, Peacock WF, Petrie MC, Ponikowski P, Ruschitzka F, van Veldhuisen DJ, Kowarski LS, Schactman M, Holzmeister J. Effect of ularitide on cardiovascular mortality in acute heart failure. N Engl J Med. 2017;376:1956–64.CrossRefGoogle Scholar
  34. 34.
    Gardner DG. Designer natriuretic peptides. J Clin Invest. 1993;92:1606–7.CrossRefGoogle Scholar
  35. 35.
    Burnett JC Jr, Korinek J. Tumultuous journey of nesiritide. Circulation. 2008;1:6–8.PubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Department of Cardiology, School of MedicineInternational University of Health and WelfareOtawaraJapan
  2. 2.Department of Cardiovascular MedicineMayo ClinicRochesterUSA

Personalised recommendations