Patient with Severe Right Heart Failure and Preserved Left Ventricular Ejection Function

  • Anaïs Caillard
  • Benjamin G. ChoustermanEmail author
  • Alexandre Mebazaa


Worsening of renal failure is a frequent complication of acute decompensated right heart failure. Right heart failure may lead to chronic kidney disease that may be aggravated during acute episodes. In addition to treat the cause of this acute heart failure, renal dysfunction related to acute right side failure requires a thorough evaluation of patient volume status, an optimization of blood pressure and cardiac output and an active decongestion. An echocardiographic follow-up of RV function and tricuspid valve regurgitation are of utmost importance. Biomarkers associated with congestion (BNP, CD146,…) may be of help to prevent and treat this complication.


Congestion Central venous pressure Tricuspid regurgitation Right ventricle dilation Echocardiography TAPSE – depletion 


  1. 1.
    Chatterjee NA, Steiner J, Lewis GD. It is time to look at heart failure with preserved ejection fraction from the right side. Circulation. 2014;130(25):2272–7.CrossRefGoogle Scholar
  2. 2.
    Zakeri R, Mohammed SF. Epidemiology of right ventricular dysfunction in heart failure with preserved ejection fraction. Curr Heart Fail Rep. 2015;12(5):295–301.CrossRefGoogle Scholar
  3. 3.
    Harjola V-P, Mebazaa A, Čelutkienė J, Bettex D, Bueno H, Chioncel O, et al. Contemporary management of acute right ventricular failure: a statement from the Heart Failure Association and the Working Group on Pulmonary Circulation and Right Ventricular Function of the European Society of Cardiology. Eur J Heart Fail. 2016;18(3):226–41.CrossRefGoogle Scholar
  4. 4.
    McMurray JJV, Adamopoulos S, Anker SD, Auricchio A, Böhm M, Dickstein K, et al. ESC guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: The Task Force for the Diagnosis and Treatment of Acute and Chronic Heart Failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur J Heart Fail. 2012;14(8):803–69.CrossRefGoogle Scholar
  5. 5.
    Sztrymf B, Souza R, Bertoletti L, Jaïs X, Sitbon O, Price LC, et al. Prognostic factors of acute heart failure in patients with pulmonary arterial hypertension. Eur Respir J. 2010;35(6):1286–93.CrossRefGoogle Scholar
  6. 6.
    Gorter TM, van Veldhuisen DJ, Bauersachs J, Borlaug BA, Celutkiene J, Coats AJS, et al. Right heart dysfunction and failure in heart failure with preserved ejection fraction: mechanisms and management. Position statement on behalf of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail. 2018;20(1):16–37.CrossRefGoogle Scholar
  7. 7.
    Aschauer S, Kammerlander AA, Zotter-Tufaro C, Ristl R, Pfaffenberger S, Bachmann A, et al. The right heart in heart failure with preserved ejection fraction: insights from cardiac magnetic resonance imaging and invasive haemodynamics. Eur J Heart Fail. 2016;18(1):71–80.CrossRefGoogle Scholar
  8. 8.
    Ter Maaten JM, Damman K, Verhaar MC, Paulus WJ, Duncker DJ, Cheng C, et al. Connecting heart failure with preserved ejection fraction and renal dysfunction: the role of endothelial dysfunction and inflammation. Eur J Heart Fail. 2016;18(6):588–98.CrossRefGoogle Scholar
  9. 9.
    McAlister FA, Ezekowitz J, Tarantini L, Squire I, Komajda M, Bayes-Genis A, et al. Renal dysfunction in patients with heart failure with preserved versus reduced ejection fraction: impact of the new Chronic Kidney Disease-Epidemiology Collaboration Group formula. Circ Heart Fail. 2012;5(3):309–14.CrossRefGoogle Scholar
  10. 10.
    Damman K, Valente MAE, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69.CrossRefGoogle Scholar
  11. 11.
    KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:S1–138.Google Scholar
  12. 12.
    Voors AA, Gori M, Liu LCY, Claggett B, Zile MR, Pieske B, et al. Renal effects of the angiotensin receptor neprilysin inhibitor LCZ696 in patients with heart failure and preserved ejection fraction. Eur J Heart Fail. 2015;17(5):510–7.CrossRefGoogle Scholar
  13. 13.
    Gottlieb SS, Abraham W, Butler J, Forman DE, Loh E, Massie BM, et al. The prognostic importance of different definitions of worsening renal function in congestive heart failure. J Card Fail. 2002;8(3):136–41.CrossRefGoogle Scholar
  14. 14.
    Schrier RW. Blood urea nitrogen and serum creatinine: not married in heart failure. Circ Heart Fail. 2008;1(1):2–5.CrossRefGoogle Scholar
  15. 15.
    Damman K, Masson S, Hillege HL, Voors AA, van Veldhuisen DJ, Rossignol P, et al. Tubular damage and worsening renal function in chronic heart failure. JACC Heart Fail. 2013;1(5):417–24.CrossRefGoogle Scholar
  16. 16.
    Damman K, Masson S, Hillege HL, Maggioni AP, Voors AA, Opasich C, et al. Clinical outcome of renal tubular damage in chronic heart failure. Eur Heart J. 2011;32(21):2705–12.CrossRefGoogle Scholar
  17. 17.
    Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62(4):263–71.CrossRefGoogle Scholar
  18. 18.
    Melenovsky V, Cervenka L, Viklicky O, Franekova J, Havlenova T, Behounek M, et al. Kidney response to heart failure: proteomic analysis of cardiorenal syndrome. Kidney Blood Press Res. 2018;43(5):1437–50.CrossRefGoogle Scholar
  19. 19.
    Sharma UC, Pokharel S, van Brakel TJ, van Berlo JH, Cleutjens JPM, Schroen B, et al. Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation. 2004;110(19):3121–8.CrossRefGoogle Scholar
  20. 20.
    Frenay A-RS, Yu L, van der Velde AR, Vreeswijk-Baudoin I, López-Andrés N, van Goor H, et al. Pharmacological inhibition of galectin-3 protects against hypertensive nephropathy. Am J Physiol Renal Physiol. 2015;308(5):F500–9.CrossRefGoogle Scholar
  21. 21.
    Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39 Suppl 4:10–21; discussion 22–24.CrossRefGoogle Scholar
  22. 22.
    Damman K, Navis G, Smilde TDJ, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9(9):872–8.CrossRefGoogle Scholar
  23. 23.
    Damman K, van Deursen VM, Navis G, Voors AA, van Veldhuisen DJ, Hillege HL. Increased central venous pressure is associated with impaired renal function and mortality in a broad spectrum of patients with cardiovascular disease. J Am Coll Cardiol. 2009;53(7):582–8.CrossRefGoogle Scholar
  24. 24.
    Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.CrossRefGoogle Scholar
  25. 25.
    Strobeck JE, Feldschuh J, Miller WL. Heart failure outcomes with volume-guided management. JACC Heart Fail. 2018;6:940–8.CrossRefGoogle Scholar
  26. 26.
    Binanay C, Califf RM, Hasselblad V, O’Connor CM, Shah MR, Sopko G, et al. Evaluation study of congestive heart failure and pulmonary artery catheterization effectiveness: the ESCAPE trial. JAMA. 2005;294(13):1625–33.CrossRefGoogle Scholar
  27. 27.
    Matsue Y, Damman K, Voors AA, Kagiyama N, Yamaguchi T, Kuroda S, et al. Time-to-furosemide treatment and mortality in patients hospitalized with acute heart failure. J Am Coll Cardiol. 2017;69(25):3042–51.CrossRefGoogle Scholar
  28. 28.
    Yilmaz MB, Gayat E, Salem R, Lassus J, Nikolaou M, Laribi S, et al. Impact of diuretic dosing on mortality in acute heart failure using a propensity-matched analysis. Eur J Heart Fail. 2011;13(11):1244–52.CrossRefGoogle Scholar
  29. 29.
    Schrier RW. Role of diminished renal function in cardiovascular mortality: marker or pathogenetic factor? J Am Coll Cardiol. 2006;47(1):1–8.CrossRefGoogle Scholar
  30. 30.
    Abdallah JG, Schrier RW, Edelstein C, Jennings SD, Wyse B, Ellison DH. Loop diuretic infusion increases thiazide-sensitive Na(+)/Cl(-)-cotransporter abundance: role of aldosterone. J Am Soc Nephrol. 2001;12(7):1335–41.PubMedGoogle Scholar
  31. 31.
    De Vecchis R, Esposito C, Ariano C. Efficacy and safety assessment of isolated ultrafiltration compared to intravenous diuretics for acutely decompensated heart failure: a systematic review with meta-analysis. Minerva Cardioangiol. 2014;62(2):131–46.PubMedGoogle Scholar
  32. 32.
    Matsue Y, Suzuki M, Torii S, Yamaguchi S, Fukamizu S, Ono Y, et al. Clinical effectiveness of tolvaptan in patients with acute heart failure and renal dysfunction. J Card Fail. 2016;22(6):423–32.CrossRefGoogle Scholar
  33. 33.
    Konstam MA, Gheorghiade M, Burnett JC, Grinfeld L, Maggioni AP, Swedberg K, et al. Effects of oral tolvaptan in patients hospitalized for worsening heart failure: the EVEREST Outcome Trial. JAMA. 2007;297(12):1319–31.CrossRefGoogle Scholar
  34. 34.
    Mullens W, Verbrugge FH, Nijst P, Martens P, Tartaglia K, Theunissen E, et al. Rationale and design of the ADVOR (Acetazolamide in Decompensated Heart Failure with Volume Overload) trial. Eur J Heart Fail. 2018;20:1591–600.CrossRefGoogle Scholar
  35. 35.
    Ghignone M, Girling L, Prewitt RM. Volume expansion versus norepinephrine in treatment of a low cardiac output complicating an acute increase in right ventricular afterload in dogs. Anesthesiology. 1984;60(2):132–5.CrossRefGoogle Scholar
  36. 36.
    Pierrakos C, Velissaris D, Franchi F, Muzzi L, Karanikolas M, Scolletta S. Levosimendan in critical illness: a literature review. J Clin Med Res. 2014;6(2):75–85.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Yilmaz MB, Yontar C, Erdem A, Karadas F, Yalta K, Turgut OO, et al. Comparative effects of levosimendan and dobutamine on right ventricular function in patients with biventricular heart failure. Heart Vessels. 2009;24(1):16–21.CrossRefGoogle Scholar
  38. 38.
    Morelli A, Teboul J-L, Maggiore SM, Vieillard-Baron A, Rocco M, Conti G, et al. Effects of levosimendan on right ventricular afterload in patients with acute respiratory distress syndrome: a pilot study. Crit Care Med. 2006;34(9):2287–93.CrossRefGoogle Scholar
  39. 39.
    Nath J, Foster E, Heidenreich PA. Impact of tricuspid regurgitation on long-term survival. J Am Coll Cardiol. 2004;43(3):405–9.CrossRefGoogle Scholar
  40. 40.
    Sadeghpour A, Hassanzadeh M, Kyavar M, Bakhshandeh H, Naderi N, Ghadrdoost B, et al. Impact of severe tricuspid regurgitation on long term survival. Res Cardiovasc Med. 2013;2(3):121–6.CrossRefGoogle Scholar
  41. 41.
    Beldhuis IE, Streng KW, Ter Maaten JM, Voors AA, van der Meer P, Rossignol P, et al. Renin-angiotensin system inhibition, worsening renal function, and outcome in heart failure patients with reduced and preserved ejection fraction: a meta-analysis of published study data. Circ Heart Fail. 2017;10(2)Google Scholar
  42. 42.
    Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.CrossRefGoogle Scholar
  43. 43.
    Van Aelst LNL, Arrigo M, Placido R, Akiyama E, Girerd N, Zannad F, et al. Acutely decompensated heart failure with preserved and reduced ejection fraction present with comparable haemodynamic congestion. Eur J Heart Fail. 2018;20(4):738–47.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Anaïs Caillard
    • 1
    • 2
  • Benjamin G. Chousterman
    • 1
    • 2
    Email author
  • Alexandre Mebazaa
    • 1
    • 2
  1. 1.Department of Anaesthesiology and Critical Care Medicine, AP-HPSaint Louis and Lariboisière University HospitalsParisFrance
  2. 2.INSERM U942 MASCOTParisFrance

Personalised recommendations