Skip to main content

Cardiorenal Syndrome in a Patient with Mechanical Circulatory Support

  • Chapter
  • First Online:

Abstract

Cardiovascular diseases are often associated with concomitant or de novo kidney disease. Renal dysfunction is common in patients with advanced heart failure. Although irreversible renal dysfunction and treatment with renal replacement therapy are considered an absolute contraindication to left ventricular assist device (LVAD) implantation as destination therapy, advanced heart failure patients with recent onset renal dysfunction should not be excluded from LVAD treatment when improvement of renal function post LVAD is anticipated. The implantation of LVADs is accompanied by short-term improvements in renal function, whereas data on long-term outcomes is ambiguous. Acute kidney injury (AKI) is not uncommon after LVAD implantation and it is accompanied by high mortality rates. Whether the type of mechanical circulatory support (MCS) device (pulsatile vs non-pulsatile) has a different effect on renal function remains unknown. The emerging role of percutaneous, short-term MCS devices for the restoration or the preservation of renal function is promising.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Triposkiadis F, Starling RC, Boudoulas H, Giamouzis G, Butler J. The cardiorenal syndrome in heart failure: cardiac? Renal? Syndrome? Heart Fail Rev. 2012;17(3):355–66.

    Article  PubMed  Google Scholar 

  2. Boudoulas KD, Triposkiadis F, Parissis J, Butler J, Boudoulas H. The cardio-renal interrelationship. Prog Cardiovasc Dis. 2017;59(6):636–48.

    Article  PubMed  Google Scholar 

  3. Stewart GC, Givertz MM. Mechanical circulatory support for advanced heart failure: patients and technology in evolution. Circulation. 2012;125(10):1304–15.

    Article  PubMed  Google Scholar 

  4. Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19(5):595–602.

    Article  PubMed  Google Scholar 

  5. Pinney SP, Anyanwu AC, Lala A, Teuteberg JJ, Uriel N, Mehra MR. Left ventricular assist devices for lifelong support. J Am Coll Cardiol. 2017;69(23):2845–61.

    Article  PubMed  Google Scholar 

  6. Miller LW, Guglin M. Patient selection for ventricular assist devices: a moving target. J Am Coll Cardiol. 2013;61(12):1209–21.

    Article  PubMed  Google Scholar 

  7. Rose EA, Gelijns AC, Moskowitz AJ, Heitjan DF, Stevenson LW, Dembitsky W, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345(20):1435–43.

    Article  CAS  PubMed  Google Scholar 

  8. Park SJ, Milano CA, Tatooles AJ, Rogers JG, Adamson RM, Steidley DE, et al. Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail. 2012;5(2):241–8.

    Article  PubMed  Google Scholar 

  9. Starling RC, Naka Y, Boyle AJ, Gonzalez-Stawinski G, John R, Jorde U, et al. Results of the post-U.S. Food and Drug Administration-approval study with a continuous flow left ventricular assist device as a bridge to heart transplantation: a prospective study using the INTERMACS (Interagency Registry for Mechanically Assisted Circulatory Support). J Am Coll Cardiol. 2011;57(19):1890–8.

    Article  PubMed  Google Scholar 

  10. Starling RC, Moazami N, Silvestry SC, Ewald G, Rogers JG, Milano CA, et al. Unexpected abrupt increase in left ventricular assist device thrombosis. N Engl J Med. 2014;370(1):33–40.

    Article  CAS  PubMed  Google Scholar 

  11. Mehra MR, Naka Y, Uriel N, Goldstein DJ, Cleveland JC Jr, Colombo PC, et al. A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med. 2017;376(5):440–50.

    Article  PubMed  Google Scholar 

  12. Mehra MR, Goldstein DJ, Uriel N, Cleveland JC Jr, Yuzefpolskaya M, Salerno C, et al. Two-year outcomes with a magnetically levitated cardiac pump in heart failure. New Eng J Med. 2018;379:896–7.

    Article  Google Scholar 

  13. Mullens W, Verbrugge FH, Nijst P, Tang WHW. Renal sodium avidity in heart failure: from pathophysiology to treatment strategies. Eur Heart J. 2017;38(24):1872–82.

    Article  CAS  PubMed  Google Scholar 

  14. McAlister FA, Ezekowitz J, Tonelli M, Armstrong PW. Renal insufficiency and heart failure: prognostic and therapeutic implications from a prospective cohort study. Circulation. 2004;109(8):1004–9.

    Article  PubMed  Google Scholar 

  15. Damman K, Valente MA, Voors AA, O’Connor CM, van Veldhuisen DJ, Hillege HL. Renal impairment, worsening renal function, and outcome in patients with heart failure: an updated meta-analysis. Eur Heart J. 2014;35(7):455–69.

    Article  PubMed  Google Scholar 

  16. Giamouzis G, Butler J, Triposkiadis F. Renal function in advanced heart failure. Congest Heart Fail. 2011;17(4):180–8.

    Article  CAS  PubMed  Google Scholar 

  17. Damman K, Navis G, Smilde TD, Voors AA, van der Bij W, van Veldhuisen DJ, et al. Decreased cardiac output, venous congestion and the association with renal impairment in patients with cardiac dysfunction. Eur J Heart Fail. 2007;9(9):872–8.

    Article  PubMed  Google Scholar 

  18. Mullens W, Abrahams Z, Francis GS, Sokos G, Taylor DO, Starling RC, et al. Importance of venous congestion for worsening of renal function in advanced decompensated heart failure. J Am Coll Cardiol. 2009;53(7):589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Damman K, Testani JM. The kidney in heart failure: an update. Eur Heart J. 2015;36(23):1437–44.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cottone S, Lorito MC, Riccobene R, Nardi E, Mule G, Buscemi S, et al. Oxidative stress, inflammation and cardiovascular disease in chronic renal failure. J Nephrol. 2008;21(2):175–9.

    PubMed  Google Scholar 

  21. MacFadyen RJ, Ng Kam Chuen MJ, Davis RC. Loop diuretic therapy in left ventricular systolic dysfunction: has familiarity bred contempt for a critical but potentially nephrotoxic cardio renal therapy? Eur J Heart Fail. 2010;12(7):649–52.

    Article  CAS  PubMed  Google Scholar 

  22. Lee DS, Gona P, Vasan RS, Larson MG, Benjamin EJ, Wang TJ, et al. Relation of disease pathogenesis and risk factors to heart failure with preserved or reduced ejection fraction: insights from the Framingham heart study of the national heart, lung, and blood institute. Circulation. 2009;119(24):3070–7.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Parikh NI, Hwang SJ, Larson MG, Meigs JB, Levy D, Fox CS. Cardiovascular disease risk factors in chronic kidney disease: overall burden and rates of treatment and control. Arch Intern Med. 2006;166(17):1884–91.

    Article  PubMed  Google Scholar 

  24. Ljungman S, Laragh JH, Cody RJ. Role of the kidney in congestive heart failure. Relationship of cardiac index to kidney function. Drugs. 1990;39 Suppl 4:10–21; discussion 2–4.

    Article  CAS  PubMed  Google Scholar 

  25. Carubelli V, Lombardi C, Gorga E, Ravera A, Metra M, Mentz RJ. Cardiorenal interactions. Heart Fail Clin. 2016;12(3):335–47.

    Article  PubMed  Google Scholar 

  26. Damman K, Navis G, Voors AA, Asselbergs FW, Smilde TD, Cleland JG, et al. Worsening renal function and prognosis in heart failure: systematic review and meta-analysis. J Card Fail. 2007;13(8):599–608.

    Article  PubMed  Google Scholar 

  27. Smith GL, Lichtman JH, Bracken MB, Shlipak MG, Phillips CO, DiCapua P, et al. Renal impairment and outcomes in heart failure: systematic review and meta-analysis. J Am Coll Cardiol. 2006;47(10):1987–96.

    Article  PubMed  Google Scholar 

  28. Metra M, Nodari S, Parrinello G, Bordonali T, Bugatti S, Danesi R, et al. Worsening renal function in patients hospitalised for acute heart failure: clinical implications and prognostic significance. Eur J Heart Fail. 2008;10(2):188–95.

    Article  PubMed  Google Scholar 

  29. Felker GM, Lee KL, Bull DA, Redfield MM, Stevenson LW, Goldsmith SR, et al. Diuretic strategies in patients with acute decompensated heart failure. N Engl J Med. 2011;364(9):797–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Metra M, Davison B, Bettari L, Sun H, Edwards C, Lazzarini V, et al. Is worsening renal function an ominous prognostic sign in patients with acute heart failure? The role of congestion and its interaction with renal function. Circ Heart Fail. 2012;5(1):54–62.

    Article  PubMed  Google Scholar 

  31. Khot UN, Mishra M, Yamani MH, Smedira NG, Paganini E, Yeager M, et al. Severe renal dysfunction complicating cardiogenic shock is not a contraindication to mechanical support as a bridge to cardiac transplantation. J Am Coll Cardiol. 2003;41(3):381–5.

    Article  PubMed  Google Scholar 

  32. Yoshioka D, Sakaguchi T, Saito S, Miyagawa S, Nishi H, Yoshikawa Y, et al. Predictor of early mortality for severe heart failure patients with left ventricular assist device implantation: significance of INTERMACS level and renal function. Circ J. 2012;76(7):1631–8.

    Article  PubMed  Google Scholar 

  33. Sandner SE, Zimpfer D, Zrunek P, Rajek A, Schima H, Dunkler D, et al. Renal function and outcome after continuous flow left ventricular assist device implantation. Ann Thorac Surg. 2009;87(4):1072–8.

    Article  PubMed  Google Scholar 

  34. Butler J, Geisberg C, Howser R, Portner PM, Rogers JG, Deng MC, et al. Relationship between renal function and left ventricular assist device use. Ann Thorac Surg. 2006;81(5):1745–51.

    Article  PubMed  Google Scholar 

  35. Kirklin JK, Naftel DC, Kormos RL, Pagani FD, Myers SL, Stevenson LW, et al. Quantifying the effect of cardiorenal syndrome on mortality after left ventricular assist device implant. J Heart Lung Transplant. 2013;32(12):1205–13.

    Article  PubMed  Google Scholar 

  36. Singh M, Shullo M, Kormos RL, Lockard K, Zomak R, Simon MA, et al. Impact of renal function before mechanical circulatory support on posttransplant renal outcomes. Ann Thorac Surg. 2011;91(5):1348–54.

    Article  PubMed  Google Scholar 

  37. Roehm B, Vest AR, Weiner DE. Left ventricular assist devices, kidney disease, and dialysis. Am J Kidney Dis. 2018;71(2):257–66.

    Article  PubMed  Google Scholar 

  38. Mao H, Katz N, Kim JC, Day S, Ronco C. Implantable left ventricular assist devices and the kidney. Blood Purif. 2014;37(1):57–66.

    Article  PubMed  Google Scholar 

  39. Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney's perspective. Heart Fail Rev. 2015;20(4):519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, et al. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36.

    Article  PubMed  Google Scholar 

  41. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30.

    Article  PubMed  Google Scholar 

  42. Gupta S, Woldendorp K, Muthiah K, Robson D, Prichard R, Macdonald PS, et al. Normalisation of haemodynamics in patients with end-stage heart failure with continuous-flow left ventricular assist device therapy. Heart Lung Circ. 2014;23(10):963–9.

    Article  PubMed  Google Scholar 

  43. Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, et al. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75.

    Article  PubMed  Google Scholar 

  44. Russell SD, Rogers JG, Milano CA, Dyke DB, Pagani FD, Aranda JM, et al. Renal and hepatic function improve in advanced heart failure patients during continuous-flow support with the HeartMate II left ventricular assist device. Circulation. 2009;120(23):2352–7.

    Article  PubMed  Google Scholar 

  45. Deo SV, Sharma V, Altarabsheh SE, Hasin T, Dillon J, Shah IK, et al. Hepatic and renal function with successful long-term support on a continuous flow left ventricular assist device. Heart Lung Circ. 2014;23(3):229–33.

    Article  PubMed  Google Scholar 

  46. Yoshioka D, Takayama H, Colombo PC, Yuzefpolskaya M, Garan AR, Topkara VK, et al. Changes in end-organ function in patients with prolonged continuous-flow left ventricular assist device support. Ann Thorac Surg. 2017;103(3):717–24.

    Article  PubMed  Google Scholar 

  47. Raichlin E, Baibhav B, Lowes BD, Zolty R, Lyden ER, Vongooru HR, et al. Outcomes in patients with severe preexisting renal dysfunction after continuous-flow left ventricular assist device implantation. ASAIO J. 2016;62(3):261–7.

    Article  CAS  PubMed  Google Scholar 

  48. Makris K, Spanou L. Acute kidney injury: definition, pathophysiology and clinical phenotypes. Clin Biochem Rev. 2016;37(2):85–98.

    PubMed  PubMed Central  Google Scholar 

  49. Agostoni PG, Marenzi GC, Pepi M, Doria E, Salvioni A, Perego G, et al. Isolated ultrafiltration in moderate congestive heart failure. J Am Coll Cardiol. 1993;21(2):424–31.

    Article  CAS  PubMed  Google Scholar 

  50. Shirakabe A, Hata N, Kobayashi N, Okazaki H, Matsushita M, Shibata Y, et al. Worsening renal function definition is insufficient for evaluating acute renal failure in acute heart failure. ESC Heart Fail. 2018;5(3):322–31.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Coffin ST, Waguespack DR, Haglund NA, Maltais S, Dwyer JP, Keebler ME. Kidney dysfunction and left ventricular assist device support: a comprehensive perioperative review. Cardiorenal Med. 2015;5(1):48–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Ross DW, Stevens GR, Wanchoo R, Majure DT, Jauhar S, Fernandez HA, et al. Left ventricular assist devices and the kidney. Clin J Am Soc Nephrol. 2018;13(2):348–55.

    Article  PubMed  Google Scholar 

  53. Sen A, Larson JS, Kashani KB, Libricz SL, Patel BM, Guru PK, et al. Mechanical circulatory assist devices: a primer for critical care and emergency physicians. Crit Care. 2016;20(1):153.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Hanberg JS, Sury K, Wilson FP, Brisco MA, Ahmad T, Ter Maaten JM, et al. Reduced cardiac index is not the dominant driver of renal dysfunction in heart failure. J Am Coll Cardiol. 2016;67(19):2199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Patel AM, Adeseun GA, Ahmed I, Mitter N, Rame JE, Rudnick MR. Renal failure in patients with left ventricular assist devices. Clin J Am Soc Nephrol. 2013;8(3):484–96.

    Article  PubMed  Google Scholar 

  56. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8(4):R204–12.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Alba AC, Rao V, Ivanov J, Ross HJ, Delgado DH. Predictors of acute renal dysfunction after ventricular assist device placement. J Card Fail. 2009;15(10):874–81.

    Article  PubMed  Google Scholar 

  58. Kaltenmaier B, Pommer W, Kaufmann F, Hennig E, Molzahn M, Hetzer R. Outcome of patients with ventricular assist devices and acute renal failure requiring renal replacement therapy. ASAIO J. 2000;46(3):330–3.

    Article  CAS  PubMed  Google Scholar 

  59. Topkara VK, Dang NC, Barili F, Cheema FH, Martens TP, George I, et al. Predictors and outcomes of continuous veno-venous hemodialysis use after implantation of a left ventricular assist device. J Heart Lung Transplant. 2006;25(4):404–8.

    Article  PubMed  Google Scholar 

  60. Genovese EA, Dew MA, Teuteberg JJ, Simon MA, Bhama JK, Bermudez CA, et al. Early adverse events as predictors of 1-year mortality during mechanical circulatory support. J Heart Lung Transplant. 2010;29(9):981–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Demirozu ZT, Etheridge WB, Radovancevic R, Frazier OH. Results of HeartMate II left ventricular assist device implantation on renal function in patients requiring post-implant renal replacement therapy. J Heart Lung Transplant. 2011;30(2):182–7.

    Article  PubMed  Google Scholar 

  62. Welp H, Rukosujew A, Tjan TD, Hoffmeier A, Kosek V, Scheld HH, et al. Effect of pulsatile and non-pulsatile left ventricular assist devices on the renin-angiotensin system in patients with end-stage heart failure. Thorac Cardiovasc Surg. 2010;58(Suppl 2):S185–8.

    Article  PubMed  Google Scholar 

  63. Kihara S, Litwak KN, Nichols L, Litwak P, Kameneva MV, Wu Z, et al. Smooth muscle cell hypertrophy of renal cortex arteries with chronic continuous flow left ventricular assist. Ann Thorac Surg. 2003;75(1):178–83; discussion 83.

    Article  PubMed  Google Scholar 

  64. Ootaki C, Yamashita M, Ootaki Y, Kamohara K, Weber S, Klatte RS, et al. Reduced pulsatility induces periarteritis in kidney: role of the local renin-angiotensin system. J Thorac Cardiovasc Surg. 2008;136(1):150–8.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Tank J, Heusser K, Malehsa D, Hegemann K, Haufe S, Brinkmann J, et al. Patients with continuous-flow left ventricular assist devices provide insight in human baroreflex physiology. Hypertension. 2012;60(3):849–55.

    Article  CAS  PubMed  Google Scholar 

  66. Sandner SE, Zimpfer D, Zrunek P, Dunkler D, Schima H, Rajek A, et al. Renal function after implantation of continuous versus pulsatile flow left ventricular assist devices. J Heart Lung Transplant. 2008;27(5):469–73.

    Article  PubMed  Google Scholar 

  67. Nadziakiewicz P, Szygula-Jurkiewicz B, Niklewski T, Pacholewicz J, Zakliczynski M, Borkowski J, et al. Effects of left ventricular assist device support on end-organ function in patients with heart failure: comparison of pulsatile- and continuous-flow support in a single-center experience. Transplant Proc. 2016;48(5):1775–80.

    Article  CAS  PubMed  Google Scholar 

  68. Kamdar F, Boyle A, Liao K, Colvin-adams M, Joyce L, John R. Effects of centrifugal, axial, and pulsatile left ventricular assist device support on end-organ function in heart failure patients. J Heart Lung Transplant. 2009;28(4):352–9.

    Article  PubMed  Google Scholar 

  69. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  70. Jacobs S, Droogne W, Waelbers V, Bossche KV, Bollen H, Geens J, et al. Evolution of renal function after partial and full mechanical support for chronic heart failure. Int J Artif Organs. 2014;37(5):364–70.

    Article  PubMed  CAS  Google Scholar 

  71. Mao H, Giuliani A, Blanca-Martos L, Kim JC, Nayak A, Virzi G, et al. Effect of percutaneous ventricular assist devices on renal function. Blood Purif. 2013;35(1–3):119–26.

    Article  PubMed  Google Scholar 

  72. Sloth E, Sprogoe P, Lindskov C, Horlyck A, Solvig J, Jakobsen C. Intra-aortic balloon pumping increases renal blood flow in patients with low left ventricular ejection fraction. Perfusion. 2008;23(4):223–6.

    Article  CAS  PubMed  Google Scholar 

  73. Vecchio S, Chechi T, Giuliani G, Lilli A, Consoli L, Spaziani G, et al. Use of Impella Recover 2.5 left ventricular assist device in patients with cardiogenic shock or undergoing high-risk percutaneous coronary intervention procedures: experience of a high-volume center. Minerva Cardioangiol. 2008;56(4):391–9.

    CAS  PubMed  Google Scholar 

  74. La Torre MW, Centofanti P, Attisani M, Patane F, Rinaldi M. Posterior ventricular septal defect in presence of cardiogenic shock: early implantation of the impella recover LP 5.0 as a bridge to surgery. Tex Heart Inst J. 2011;38(1):42–9.

    PubMed  PubMed Central  Google Scholar 

  75. Gregoric ID, Loyalka P, Radovancevic R, Jovic Z, Frazier OH, Kar B. TandemHeart as a rescue therapy for patients with critical aortic valve stenosis. Ann Thorac Surg. 2009;88(6):1822–6.

    Article  PubMed  Google Scholar 

  76. Aragon J, Lee MS, Kar S, Makkar RR. Percutaneous left ventricular assist device: “TandemHeart” for high-risk coronary intervention. Catheter Cardiovasc Interv. 2005;65(3):346–52.

    Article  PubMed  Google Scholar 

  77. Smith EJ, Reitan O, Keeble T, Dixon K, Rothman MT. A first-in-man study of the Reitan catheter pump for circulatory support in patients undergoing high-risk percutaneous coronary intervention. Catheter Cardiovasc Interv. 2009;73(7):859–65.

    Article  PubMed  Google Scholar 

  78. Kilburn DJ, Shekar K, Fraser JF. The complex relationship of extracorporeal membrane oxygenation and acute kidney injury: causation or association? Biomed Res Int. 2016;2016:1094296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Peek GJ, Mugford M, Tiruvoipati R, Wilson A, Allen E, Thalanany MM, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374(9698):1351–63.

    Article  PubMed  Google Scholar 

  80. Doll N, Kiaii B, Borger M, Bucerius J, Kramer K, Schmitt DV, et al. Five-year results of 219 consecutive patients treated with extracorporeal membrane oxygenation for refractory postoperative cardiogenic shock. Ann Thorac Surg. 2004;77(1):151–7; discussion 7.

    Article  PubMed  Google Scholar 

  81. Smedira NG, Moazami N, Golding CM, McCarthy PM, Apperson-Hansen C, Blackstone EH, et al. Clinical experience with 202 adults receiving extracorporeal membrane oxygenation for cardiac failure: survival at five years. J Thorac Cardiovasc Surg. 2001;122(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  82. Chung AC, Lan HY. Chemokines in renal injury. J Am Soc Nephrol. 2011;22(5):802–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Randall C. Starling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xanthopoulos, A., Triposkiadis, F., Starling, R.C. (2020). Cardiorenal Syndrome in a Patient with Mechanical Circulatory Support. In: Tang, W., Verbrugge, F., Mullens, W. (eds) Cardiorenal Syndrome in Heart Failure. Springer, Cham. https://doi.org/10.1007/978-3-030-21033-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21033-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21032-8

  • Online ISBN: 978-3-030-21033-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics