Skip to main content

Static Condensation Optimal Port/Interface Reduction and Error Estimation for Structural Health Monitoring

  • Conference paper
  • First Online:
  • 589 Accesses

Part of the book series: IUTAM Bookseries ((IUTAMBOOK,volume 36))

Abstract

Having the application in structural health monitoring in mind, we propose reduced port spaces that exhibit an exponential convergence for static condensation procedures on structures with changing geometries for instance induced by newly detected defects. Those reduced port spaces generalize the port spaces introduced in [K. Smetana and A.T. Patera, SIAM J. Sci. Comput., 2016] to geometry changes and are optimal in the sense that they minimize the approximation error among all port spaces of the same dimension. Moreover, we show numerically that we can reuse port spaces that are constructed on a certain geometry also for the static condensation approximation on a significantly different geometry, making the optimal port spaces well suited for use in structural health monitoring.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note, that this may restrict the applicability of the spectral greedy to training sets \(\varXi _{PDE}\) of moderate cardinality.

  2. 2.

    We note that in order to prove (22) it is necessary to define the lifting inner product on the ports for one reference parameter \(\bar{\varvec{\mu }} \in \mathscr {P}_{Geo}\) and use the equivalence of the norm induced by the lifting inner product and the \(H^{1/2}\)-norm on the ports. Exploiting that the latter is the same for all considered geometries allows switching between the geometries in the proof.

  3. 3.

    As indicated above it is necessary to slightly modify the spectral greedy algorithm to prove convergence.

  4. 4.

    Note that the values of the random Dirichlet boundary conditions do not belong to the parameter set.

References

  1. Babuška, I., Huang, X., Lipton, R.: Machine computation using the exponentially convergent multiscale spectral generalized finite element method. ESAIM Math. Model. Numer. Anal. 48(2), 493–515 (2014)

    Article  MathSciNet  Google Scholar 

  2. Babuška, I., Lipton, R.: Optimal local approximation spaces for generalized finite element methods with application to multiscale problems. Multiscale Model. Simul. 9(1), 373–406 (2011)

    Article  MathSciNet  Google Scholar 

  3. Bampton, M., Craig, R.: Coupling of substructures for dynamic analyses. AIAA J. 6(7), 1313–1319 (1968)

    Article  Google Scholar 

  4. Bourquin, F.: Component mode synthesis and eigenvalues of second order operators: discretization and algorithm. RAIRO Modél. Math. Anal. Numér. 26(3), 385–423 (1992)

    Article  MathSciNet  Google Scholar 

  5. Buhr, A., Engwer, C., Ohlberger, M., Rave, S.: ArbiLoMod, a simulation technique designed for arbitrary local modifications. SIAM J. Sci. Comput. 39(4), A1435–A1465 (2017)

    Article  MathSciNet  Google Scholar 

  6. Buhr, A., Smetana, K.: Randomized local model order reduction. SIAM J. Sci. Comput. 40(4), A2120–A2151 (2018)

    Article  MathSciNet  Google Scholar 

  7. Eftang, J.L., Patera, A.T.: Port reduction in parametrized component static condensation: approximation and a posteriori error estimation. Int. J. Numer. Meth. Eng. 96(5), 269–302 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Eigen: a C++ linear algebra library: http://eigen.tuxfamily.org/

  9. Fehr, J., Holzwarth, P., Eberhard, P.: Interface and model reduction for efficient explicit simulations—a case study with nonlinear vehicle crash models. Math. Comput. Model. Dyn. Syst. 22(4), 380–396 (2016)

    Article  MathSciNet  Google Scholar 

  10. Hetmaniuk, U., Lehoucq, R.B.: A special finite element method based on component mode synthesis. ESAIM Math. Model. Numer. Anal. 44(3), 401–420 (2010)

    Article  MathSciNet  Google Scholar 

  11. Hughes, T.J.R., Engel, G., Mazzei, L., Larson, M.G.: The continuous Galerkin method is locally conservative. J. Comput. Phys. 163(2), 467–488 (2000)

    Article  MathSciNet  Google Scholar 

  12. Hurty, W.C.: Dynamic analysis of structural systems using component modes. AIAA J. 3(4), 678–685 (1965)

    Article  Google Scholar 

  13. Huynh, D.B.P., Knezevic, D.J., Patera, A.T.: A static condensation reduced basis element method: approximation and a posteriori error estimation. ESAIM Math. Model. Numer. Anal. 47(1), 213–251 (2013)

    Article  MathSciNet  Google Scholar 

  14. Iapichino, L., Quarteroni, A., Rozza, G.: Reduced basis method and domain decomposition for elliptic problems in networks and complex parametrized geometries. Comput. Math. Appl. 71(1), 408–430 (2016)

    Article  MathSciNet  Google Scholar 

  15. Jakobsson, H., Bengzon, F., Larson, M.G.: Adaptive component mode synthesis in linear elasticity. Int. J. Numer. Meth. Eng. 86(7), 829–844 (2011)

    Article  MathSciNet  Google Scholar 

  16. Kirk, B.S., Peterson, J.W., Stogner, R.H., Carey, G.F.: libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22(3–4), 237–254 (2006)

    Article  Google Scholar 

  17. Knezevic, D.J., Kang, H., Sharma, P., Malinowski, G., Nguyen, T.T., et al.: Structural integrity management of offshore structures via RB-FEA and fast full load mapping based digital twins. In: The 28th International Ocean and Polar Engineering Conference. International Society of Offshore and Polar Engineers (2018)

    Google Scholar 

  18. Knezevic, D.J., Peterson, J.W.: A high-performance parallel implementation of the certified reduced basis method. Comput. Meth. Appl. Mech. Eng. 200(13–16), 1455–1466 (2011)

    Article  Google Scholar 

  19. Kolmogoroff, A.: Über die beste Annäherung von Funktionen einer gegebenen Funktionenklasse. Ann Math. (2) 37(1), 107–110 (1936)

    Article  MathSciNet  Google Scholar 

  20. Martini, I., Rozza, G., Haasdonk, B.: Reduced basis approximation and a-posteriori error estimation for the coupled Stokes-Darcy system. Adv. Comput. Math. 41(5), 1131–1157 (2015)

    Article  MathSciNet  Google Scholar 

  21. Pinkus, A.: \(n\)-widths in Approximation Theory, vol. 7. Springer-Verlag, Berlin (1985)

    Book  Google Scholar 

  22. Quarteroni, A., Valli, A.: Domain decomposition methods for partial differential equations. In: Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York, reprint (2005)

    Google Scholar 

  23. Smetana, K.: A new certification framework for the port reduced static condensation reduced basis element method. Comput. Meth. Appl. Mech. Eng. 283, 352–383 (2015)

    Article  MathSciNet  Google Scholar 

  24. Smetana, K., Patera, A.T.: Optimal local approximation spaces for component-based static condensation procedures. SIAM J. Sci. Comput. 38(5), A3318–A3356 (2016)

    Article  MathSciNet  Google Scholar 

  25. Smetana, K., Patera, A.T.: Fully localized a posteriori error estimation for the port reduced static condensation reduced basis element method (2018+). In preparation

    Google Scholar 

  26. Taddei, T., Patera, A.T.: A localization strategy for data assimilation; application to state estimation and parameter estimation. SIAM J. Sci. Comput. 40(2), B611–B636 (2018)

    Article  MathSciNet  Google Scholar 

  27. Veroy, K., Prud’homme, C., Rovas, D.V., Patera, A.T.: A posteriori error bounds for reduced-basis approximation of parametrized noncoercive and nonlinear elliptic partial differential equations. In: Proceedings of the 16th AIAA Computational Fluid Dynamics Conference, vol. 3847 (2003)

    Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Dr. Anthony Patera for many fruitful discussions and comments on the content of this paper. This work was supported by OSD/AFOSR/MURI Grant FA9550-09-1-0613 and ONR Grant N00014-11-1-0713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Smetana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Smetana, K. (2020). Static Condensation Optimal Port/Interface Reduction and Error Estimation for Structural Health Monitoring. In: Fehr, J., Haasdonk, B. (eds) IUTAM Symposium on Model Order Reduction of Coupled Systems, Stuttgart, Germany, May 22–25, 2018. IUTAM Bookseries, vol 36. Springer, Cham. https://doi.org/10.1007/978-3-030-21013-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21013-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21012-0

  • Online ISBN: 978-3-030-21013-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics