Skip to main content

Abstract

GaAs is a widely used III-V semiconductor compound in microelectronics. Since the 90’s, a growing interest is observed for its larger integration in electronics industry (micro and nano electronics) and solar in cells. Therefore, new characterization needs are emerging to address this kind of applications. In particular, specific features such as the thermal properties are of great interest. In this framework, the thermal conductivity of GaAs substrate has to be studied. In this paper, we present the results obtained when characterizing a 350 µm thick GaAs substrate by the so-called 3-omega method. This latter has been widely exploited to determine the thermal conductivity of a large range of materials. It makes use of a thin metal strip, deposited on the sample under test, which serves as both a heating element ant a sensor. The results obtained experimentally are compared to those issued from an analytical solution (Cahill solution).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torres, P., Torelló, A., Bafaluy, J., Camacho, J., Cartoix, X.: First principles kinetic-collective thermal conductivity of semiconductors. Phys. Rev. B 95, 165407 (2017)

    Article  Google Scholar 

  2. Hamaizia, Z., Sengouga, N., Missous, M., Yagoub, M.C.E.: L-band low noise amplifier using a novel InGaAs/InAlAs/InP device. In: 6th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications, IEEE Xplore, pp. 258– 262. Sousse, Tunisia (2012)

    Google Scholar 

  3. Vasilea, B.S., BenDalyb, A., Craciunc, D., Alexandroud, I., Lazard, S., Lemaîtree, A., Maarefb, M.A., Iacomif, F., Craciunc, V.: Structural and physical properties of InAlAs quantum dots grown on GaAs. Phys. B: Condens. Matter 535, 262–267 (2018)

    Article  Google Scholar 

  4. Tritt, T.M., Weston, D., Measurement techniques and considerations for determining thermal conductivity of bulk materials. In: Tritt, T.M. (ed.) Thermal Conductivity Theory, Properties, and Applications, pp. 187–203. Kluwer Academic/Plenum Publishers, New York (2004)

    Google Scholar 

  5. Cahill, D.G.: Thermal conductivity measurement from 30 to 750 K: the 3-omega method. Rev. Sci. Instrum. 61, 802–808 (1990)

    Article  Google Scholar 

  6. Moridi, A., Zhang, L., Liu, W., Duvall, S., Brawley, A., Jiang, Z., Yang, S., Li, C.: Characterisation of high thermal conductivity thin-film substrate systems and their interface thermal resistance. Surf. Coat.S Technol. 334, 233–242 (2018)

    Article  Google Scholar 

  7. Cahill, D.G., Lee, S.-M., Selinder, T.: Thermal conductivity of k-Al2O3 wear-resistant coatings. J. Appl. Phys. 83, 5783–5786 (1998)

    Article  Google Scholar 

  8. Qiu, L., Zou, H., Tang, D., Wen, D., Feng, Y., Zhang, X.: Inhomogeneity in pore size appreciably lowering thermal conductivity for porous thermal insulators. Appl. Therm. Eng. 130, 1004–1011 (2018)

    Article  Google Scholar 

  9. Hu, X., Jack, Padilla Antonio A., Xu Jun, Fisher Timothy, S., Goodson Kenneth, E.: 3-Omega Measurements of Vertically Oriented Carbon Nanotubes on Silicon. J. Heat Transf. 128, 1109–1113 (2006)

    Article  Google Scholar 

  10. Jaber, W., Chapuis, P.O.: Non-idealities in the 3ω method for thermal characterization in low-and high frequency. Am. Inst. Phys. Adv. 8, 045111 (2018)

    Google Scholar 

  11. Borca-Tasciuc, T., Achimov, D., Liu, W.L., Chen, G., Ren, H.-W., Lin, C.-H., Pei, S.S.: Data reduction in 3ω method for thin-film thermal conductivity determination. Rev. Sci. Instrum. 72(4), 2139–2147 (2001)

    Article  Google Scholar 

  12. Tgra, L.G., Shiomi, J., Esferjani, K., Chen, G.: Gallium Aresenide thermal conductivity and optical phonon relaxation times from first-principle calculations. Eur. Lett. 101, 16001 (2013)

    Article  Google Scholar 

  13. Inyushkin, A.V., Taldenkov, A.N., Yakubovsky, A.Y., Markov, A.V., Moreno-Garsia, L., Sharonov, B.N.: Thermal conductivity of isotopically enriched GaAs crystal. Semicond. Sci. Technol. 18, 685–688 (2003)

    Article  Google Scholar 

  14. Al-Khudary, N., Cresson, P.Y., Wei, W., Happy, H.G., Lasri, T.: Inkjet printing technology for polymer thermal conductivity measurement by the three omega method. Polym. Test. 40, 187–195 (2014)

    Article  Google Scholar 

  15. El-Gibari, M., Belkerk, B., Lupy, C., Scudeller, Y., Landesman, J.P.: Caractérisation Thermique d’Emetteurs Electro-optiques: des matériaux aux assemblages. Journée Thématique Caractérisation Thermophysique et Applications en Microélectronique, Orléans (2011)

    Google Scholar 

  16. SZE S.M.: Semi-conductor devices physics and technology, 2nd edn. Wiley. Appendix G, 538 (1985)

    Google Scholar 

  17. Inyushkin, A.V., Taldenkov, A.N., Yakubovsky, A.Y., Markov, A.V., Moreno-Garsia, L., Sharonov, B.N.: Thermal conductivity of isotopically enriched GaAs crystal. Semicond. Sci. Technol. 18, 685–688 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Guermoudi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guermoudi, A.A., Cresson, P.Y., Ouldabbes, A., Lasri, T. (2020). Simulation and Experimental Study of GaAs Substrate Thermal Conductivity Using 3-Omega Method. In: Bouhlel, M., Rovetta, S. (eds) Proceedings of the 8th International Conference on Sciences of Electronics, Technologies of Information and Telecommunications (SETIT’18), Vol.2. SETIT 2018. Smart Innovation, Systems and Technologies, vol 147. Springer, Cham. https://doi.org/10.1007/978-3-030-21009-0_16

Download citation

Publish with us

Policies and ethics