Controllable Privacy Preserving Blockchain

FiatChain: Distributed Privacy Preserving Cryptocurrency with Law Enforcement Capabilities
  • Rami PuzisEmail author
  • Guy Barshap
  • Polina Zilberman
  • Oded Leiba
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11527)


Central banks are reluctant to accept cryptocurrency, because current implementations of decentralized privacy preserving transactions make it impossible to apply know your customer (KYC) and anti-money laundering (AML) procedures. In this paper, we augment a distributed privacy preserving cyptocurrency known as Monero with KYC and AML procedures. The proposed solution relies on secretly sharing of the clients’ private view keys and private transaction keys among a large number of permissioned signers (PSs). The resulting cryptocurrency maintains the notion of distributed trust while allowing a group of PSs to cooperate, collectively applying KYC and AML procedures.


Cryptocurrency Privacy Anonymity Blockchain Anti-money laundering 


  1. 1.
    The dai stablecoin system. Accessed 06 Feb 2019
  2. 2.
    Maxwell, G.: Post on bitcoin forum. Accessed 09 Feb 2019
  3. 3.
    Tether: Fiat currencies on the bitcoin blockchain. Accessed 06 Feb 2019
  4. 4.
    Swiss national bank plans to launch their own cryptocurrency, February 2018. Accessed 27 Feb 2018
  5. 5.
    Berentsen, A., Schar, F., et al.: The case for central bank electronic money and the non-case for central bank cryptocurrencies. Federal Reserve Bank of St. Louis Review 100(2), 97–106 (2018)CrossRefGoogle Scholar
  6. 6.
    Bernstein, D.J., Duif, N., Lange, T., Schwabe, P., Yang, B.Y.: High-speed high-security signatures. J. Crypt. Eng. 2(2), 77–89 (2012)CrossRefGoogle Scholar
  7. 7.
    Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak specifications. Submission to nist (round 2), pp. 320–337 (2009)Google Scholar
  8. 8.
    Biryukov, A., Khovratovich, D., Pustogarov, I.: Deanonymisation of clients in bitcoin p2p network. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, pp. 15–29. ACM (2014)Google Scholar
  9. 9.
    Bonneau, J., Narayanan, A., Miller, A., Clark, J., Kroll, J.A., Felten, E.W.: Mixcoin: anonymity for bitcoin with accountable mixes. In: Christin, N., Safavi-Naini, R. (eds.) FC 2014. LNCS, vol. 8437, pp. 486–504. Springer, Heidelberg (2014). Scholar
  10. 10.
    Buchanan, B.: The bank of England is planning a bitcoin-style virtual currency – but could it really replace cash? January 2018. Accessed 4 Jan 2018
  11. 11.
    Camenisch, J., Hohenberger, S., Lysyanskaya, A.: Balancing accountability and privacy using e-cash (extended abstract). In: De Prisco, R., Yung, M. (eds.) SCN 2006. LNCS, vol. 4116, pp. 141–155. Springer, Heidelberg (2006). Scholar
  12. 12.
    Camenisch, J., Maurer, U., Stadler, M.: Digital payment systems with passive anonymity-revoking trustees. J. Comput. Secur. 5(1), 69–89 (1997)CrossRefGoogle Scholar
  13. 13.
    Carney, M.: The future of money. In: Scottish Economics Conference. Edinburgh University, March 2018. Accessed 2 Mar 2019
  14. 14.
    Damgård, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practical covertly secure MPC for dishonest majority – or: breaking the SPDZ limits. In: Crampton, J., Jajodia, S., Mayes, K. (eds.) ESORICS 2013. LNCS, vol. 8134, pp. 1–18. Springer, Heidelberg (2013). Scholar
  15. 15.
    Damgård, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012). Scholar
  16. 16.
    Danezis, G., Meiklejohn, S.: Centrally banked cryptocurrencies. arXiv preprint arXiv:1505.06895 (2015)
  17. 17.
    De Cristofaro, E., Tsudik, G.: Practical private set intersection protocols with linear complexity. In: Sion, R. (ed.) FC 2010. LNCS, vol. 6052, pp. 143–159. Springer, Heidelberg (2010). Scholar
  18. 18.
    Freedman, M.J., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004). Scholar
  19. 19.
    Garman, C., Green, M., Miers, I.: Accountable privacy for decentralized anonymous payments. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 81–98. Springer, Heidelberg (2017). Scholar
  20. 20.
    Georgacopoulos, C.: Banks and the crypto industry: Asia, April 2018. Accessed 18 Apr 2018
  21. 21.
    Gupta, S., Lauppe, P., Ravishankar, S.: A blockchain-backed central bank cryptocurrency (2017)Google Scholar
  22. 22.
    Harn, L., Lin, C.: Strong (n, t, n) verifiable secret sharing scheme. Inf. Sci. 180(16), 3059–3064 (2010)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Heilman, E., Alshenibr, L., Baldimtsi, F., Scafuro, A., Goldberg, S.: Tumblebit: an untrusted bitcoin-compatible anonymous payment hub. In: Network and Distributed System Security Symposium (2017)Google Scholar
  24. 24.
    Hopwood, D., Bowe, S., Hornby, T., Wilcox, N.: Zcash protocol specification. Technical report, 2016–1.10. Zerocoin Electric Coin Company (2016)Google Scholar
  25. 25.
    Ibrahim, M.H., Ali, I., Ibrahim, I., El-Sawi, A.: A robust threshold elliptic curve digital signature providing a new verifiable secret sharing scheme. In: 2003 IEEE 46th Midwest Symposium on Circuits and Systems, vol. 1, pp. 276–280. IEEE (2003)Google Scholar
  26. 26.
    Jedusor, T.E.: Mimblewimble (2016)Google Scholar
  27. 27.
    Kappos, G., Yousaf, H., Maller, M., Meiklejohn, S.: An empirical analysis of anonymity in zcash. arXiv preprint arXiv:1805.03180 (2018)
  28. 28.
    Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure computation with oblivious transfer. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pp. 830–842. ACM (2016)Google Scholar
  29. 29.
    Kumar, A., Fischer, C., Tople, S., Saxena, P.: A traceability analysis of monero’s blockchain. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 153–173. Springer, Cham (2017). Scholar
  30. 30.
    Maxwell, G., Poelstra, A.: Borromean ring signatures (2015)Google Scholar
  31. 31.
    Meiklejohn, S., et al.: A fistful of bitcoins: characterizing payments among men with no names. In: Proceedings of the 2013 Conference on Internet Measurement Conference, pp. 127–140. ACM (2013)Google Scholar
  32. 32.
    Miyaji, A., Nishida, S.: A scalable multiparty private set intersection. Network and System Security. LNCS, vol. 9408, pp. 376–385. Springer, Cham (2015). Scholar
  33. 33.
    Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008)Google Scholar
  34. 34.
    Ning, C., Xu, Q.: Multiparty computation for modulo reduction without bit-decomposition and a generalization to bit-decomposition. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 483–500. Springer, Heidelberg (2010). Scholar
  35. 35.
    Noether, S., Mackenzie, A., Monero-Core-Team: Ring confidential transactions, February 2016.
  36. 36.
    Noether, S., Mackenzie, A., et al.: Ring confidential transactions. Ledger 1, 1–18 (2016)CrossRefGoogle Scholar
  37. 37.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). Scholar
  38. 38.
    Quesnelle, J.: On the linkability of zcash transactions. arXiv preprint arXiv:1712.01210 (2017)
  39. 39.
    Ron, D., Shamir, A.: Quantitative analysis of the full bitcoin transaction graph. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 6–24. Springer, Heidelberg (2013). Scholar
  40. 40.
    Ruffing, T., Moreno-Sanchez, P., Kate, A.: CoinShuffle: practical decentralized coin mixing for bitcoin. In: Kutyłowski, M., Vaidya, J. (eds.) ESORICS 2014. LNCS, vol. 8713, pp. 345–364. Springer, Cham (2014). Scholar
  41. 41.
    van Saberhagen, N.: Cryptonote v 2.0, October 2013.
  42. 42.
    Sasson, E.B., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: 2014 IEEE Symposium on Security and Privacy (SP), pp. 459–474. IEEE (2014)Google Scholar
  43. 43.
    Suberg, W.: Malaysian central bank: Id now needed for any crypto exchange transaction, February 2018. Accessed 28 Feb 2018
  44. 44.
    de Vilaca Burgos, A., de Oliveira Filho, J.D., Suares, M.V.C., de Almeida, R.S.: Distributed ledger technical research in central bank of brazil (2017)Google Scholar
  45. 45.
    Wüst, K., Kostiainen, K., Capkun, V., Capkun, S.: PRCash: fast, private and regulated transactions for digital currenciesGoogle Scholar
  46. 46.
    Yao, A.C.: Protocols for secure computations (extended abstract). In: 23rd Annual Symposium on Foundations of Computer Science, pp. 160–164 (1982)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Rami Puzis
    • 1
    Email author
  • Guy Barshap
    • 1
  • Polina Zilberman
    • 1
  • Oded Leiba
    • 1
  1. 1.Telekom Innovation Laboratories, Department of Software and Information Systems EngineeringBen-Gurion University of the NegevBeer-ShevaIsrael

Personalised recommendations