Skip to main content

Microalgae, a Biological Resource for the Future

  • Chapter
  • First Online:
Book cover Essentials of Marine Biotechnology
  • 1030 Accesses

Abstract

People often speak of the seas as being blue, but the blue color of the oceans is said to be the result of the water’s depth and various physical factors. A beautiful sea is a deep shade of indigo, but not all seas are blue. We see different colors ranging from green to brown, which are the result of phytoplankton in the water. The term plankton refers to floating organisms that drift with the water’s currents, encompassing the two categories of phytoplankton and zooplankton. Phytoplankton consists of single-cell algae that belong, like green plants on land, to the category of primary producers, generating cells and energy through photosynthesis .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aaronson, S., & Dubinsky, Z. (1982). Mass production of microalgae. Experientia, 38(1), 36–40.

    Article  CAS  Google Scholar 

  • Aresta, M., Dibenedetto, A., & Barberio, G. (2005). Utilization of macro-algae for enhanced CO2 fixation and biofuels production: Development of a computing software for an LCA study. Fuel Processing Technology, 86(14–15), 1679–1693.

    Article  CAS  Google Scholar 

  • Becker, E. (2007). Micro-algae as a source of protein. Biotechnology Advances, 25(2), 207–210.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (1995). Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology, 7(1), 3–15.

    Article  CAS  Google Scholar 

  • Borowitzka, M. A. (1999). Commercial production of microalgae: Ponds, tanks, and fermenters. Progress in Industrial Microbiology, 35, 313–321.

    Article  Google Scholar 

  • Capelli, B., & Cysewski, G. R. (2010). Potential health benefits of spirulina microalgae. Nutrafoods, 9(2), 19–26.

    Article  CAS  Google Scholar 

  • Cheung, R. C. F., Ng, T. B., & Wong, J. H. (2015). Marine peptides: Bioactivities and applications. Marine Drugs, 13(7), 4006–4043.

    Article  CAS  Google Scholar 

  • Costa, J. A. V., & De Morais, M. G. (2011). The role of biochemical engineering in the production of biofuels from microalgae. Bioresource Technology, 102(1), 2–9.

    Article  CAS  Google Scholar 

  • Doan, T. T. Y., Sivaloganathan, B., & Obbard, J. P. (2011). Screening of marine microalgae for biodiesel feedstock. Biomass and Bioenergy, 35(7), 2534–2544.

    Article  CAS  Google Scholar 

  • Dunahay, T. G., Jarvis, E. E., Dais, S. S., & Roessler, P. G. (1996). Manipulation of microalgae lipid production using genetic engineering. Applied Biochemistry and Biotechnology, 57(1), 223.

    Article  Google Scholar 

  • Fish, S. A., & Codd, G. (1994). Bioactive compound production by thermophilic and thermotolerant cyanobacteria (blue-green algae). World Journal of Microbiology and Biotechnology, 10(3), 338–341.

    Article  CAS  Google Scholar 

  • Gerwick, W. H., Roberts, M. A., Proteau, P. J., & Chen, J.-L. (1994). Screening cultured marine microalgae for anticancer-type activity. Journal of Applied Phycology, 6(2), 143–149.

    Article  CAS  Google Scholar 

  • Hong, S. J., & Lee, C. G. (2015). Microalgal systems biology through genome-scale metabolic reconstructions for industrial applications. In S. K. Kim (Ed.), Handbook of marine microalgae: Biotechnology advances (pp. 353–370). Oxford, UK: AP.

    Google Scholar 

  • Hoseini, S., Khosravi-Darani, K., & Mozafari, M. (2013). Nutritional and medical applications of spirulina microalgae. Mini Reviews in Medicinal Chemistry, 13(8), 1231–1237.

    Article  CAS  Google Scholar 

  • Kang, K. H., Qian, Z. J., Ryu, B., Karadeniz, F., Kim, D., & Kim, S. K. (2012). Antioxidant peptides from protein hydrolysate of microalgae Navicula incerta and their protective effects in HepG2/CYP2E1 cells induced by ethanol. Phytotherapy Research, 26(10), 1555–1563.

    CAS  PubMed  Google Scholar 

  • Kao, C.-Y., Chiu, S.-Y., Huang, T.-T., Dai, L., Hsu, L.-K., & Lin, C.-S. (2012). Ability of a mutant strain of the microalgae Chlorella sp. to capture carbon dioxide for biogas upgrading. Applied Energy, 93, 176–183.

    Article  CAS  Google Scholar 

  • Kellam, S. J., & Walker, J. M. (1989). Antibacterial activity from marine microalgae in laboratory culture. British Phycological Journal, 24(2), 191–194.

    Article  Google Scholar 

  • Kumar, M. S., Miao, Z. H., & Wyatt, S. K. (2010). Influence of nutrient loads, feeding frequency and inoculum source on growth of Chlorella vulgaris in digested piggery effluent culture medium. Bioresource Technology, 101(15), 6012–6018.

    Article  CAS  Google Scholar 

  • Kumazawa, S. (1991). Screening, cultivation of marine microalgae, In S. Miyachi, N. Saga, & T. Matsunaga (Eds.), Labo-manual marine biotechnology (pp. 18–28). Tokyo, Japan: Shokabo Publishing Co.

    Google Scholar 

  • Larkum, A. W., Ross, I. L., Kruse, O., & Hankamer, B. (2012). Selection, breeding and engineering of microalgae for bioenergy and biofuel production. Trends in Biotechnology, 30(4), 198–205.

    Article  CAS  Google Scholar 

  • Lee, Y.-K. (1997). Commercial production of microalgae in the Asia-Pacific rim. Journal of Applied Phycology, 9(5), 403–411.

    Article  Google Scholar 

  • Liu, J., & Hu, Q. (2013). Chlorella: Industrial production of cell mass and chemicals. In Handbook of microalgae culture: Applied phycology and biotechnology (pp. 327–338).

    Google Scholar 

  • Maruyama, I., & Ando, Y. (1992). Mass culturing microalgae: Chlorella. In K. Yamaguchi (Ed.), Utilization of microalgae (pp. 18–30). Yokyo, Japan: Kouseisha Kouseikaku Publishing Co.

    Google Scholar 

  • Matsunaga, T. (1992). Development of biotechnology, In K. Yamaguchi (Ed.), Utilization of microalgae (pp. 81–101). Tokyo, Japan: Kouseisha Kouseikaku Publishing Co.

    Google Scholar 

  • Matsunaga, T., Takeyama, H., Sudo, H., Oyama, N., Ariura, S., Takano, H., et al. (1991). Glutamate production from CO2 by Marine Cyanobacterium Synechococcus sp. Applied Biochemistry and Biotechnology, 28(1), 157.

    Article  Google Scholar 

  • Matsunaga, T., Takeyama, H., Nakao, T., & Yamazawa, A. (1999). Screening of marine microalgae for bioremediation of cadmium-polluted seawater. Journal of Biotechnology, 70(1–3), 33–38.

    Article  CAS  Google Scholar 

  • Michalak, I., & Chojnacka, K. (2015). Algae as production systems of bioactive compounds. Engineering in Life Sciences, 15(2), 160–176.

    Article  CAS  Google Scholar 

  • Moore, R. E., Patterson, G. M., & Carmichael, W. W. (1988). New pharmaceuticals from cultured blue-green algae. Biomedical Importance of Marine Organisms, 13(1988), 143–150.

    Google Scholar 

  • Muller-Feuga, A. (2000). The role of microalgae in aquaculture: Situation and trends. Journal of Applied Phycology, 12(3–5), 527–534.

    Article  Google Scholar 

  • Ng, D. H. P., Ng, Y. K., Shen, H., & Lee, Y. K. (2015). Microalgal biotechnology: The way forward, In S. K. Kim (Ed.), Handbook of marine microalgae: Biotechnology Advances (pp. 69–77). London, UK: Academic Press.

    Google Scholar 

  • Ötleş, S., & Pire, R. (2001). Fatty acid composition of Chlorella and Spirulina microalgae species. Journal of AOAC International, 84(6), 1708–1714.

    Article  Google Scholar 

  • Pires, J. C. (2015). Mass production of microalgae. In Handbook of marine microalgae (pp. 55–68). Elsevier.

    Google Scholar 

  • Pires, J., Alvim-Ferraz, M., Martins, F., & Simões, M. (2012). Carbon dioxide capture from flue gases using microalgae: engineering aspects and biorefinery concept. Renewable and Sustainable Energy Reviews, 16(5), 3043–3053.

    Article  CAS  Google Scholar 

  • Pulz, O., & Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635–648.

    Article  CAS  Google Scholar 

  • Radakovits, R., Jinkerson, R. E., Darzins, A., & Posewitz, M. C. (2010). Genetic engineering of algae for enhanced biofuel production. Eukaryotic Cell, 9(4), 486–501.

    Article  CAS  Google Scholar 

  • Raja, R., Hemaiswarya, S., Kumar, N. A., Sridhar, S., & Rengasamy, R. (2008). A perspective on the biotechnological potential of microalgae. Critical Reviews in Microbiology, 34(2), 77–88.

    Article  CAS  Google Scholar 

  • Saino, T., & Hattori, A. (1978). Diel variation in nitrogen fixation by a marine blue-green alga, Trichodesmium thiebautii. Deep Sea Research, 25(12), 1259–1263.

    Article  Google Scholar 

  • Spolaore, P., Joannis-Cassan, C., Duran, E., & Isambert, A. (2006). Commercial applications of microalgae. Journal of Bioscience and Bioengineering, 101(2), 87–96.

    Article  CAS  Google Scholar 

  • Takeyama, H., & Matsunaga, T. (1989). Genetic recombination of photosynthetic bacterium, microalgae, In T. Matsunaga (Ed.), Marine bio marine new materials and new substances (pp. 163–167). Tokyo, Japan: CMC, Publishing, Co.

    Google Scholar 

  • Taub, F. B., & Dollar, A. M. (1964). A Chlorella-Daphnia food-chain study: The design of a compatible chemically defined culture medium 1, 2. Limnology and Oceanography, 9(1), 61–74.

    Article  Google Scholar 

  • Van Baalen, C. (1962). Studies on marine blue-green algae. Botanica Marina, 4(1–2), 129–139.

    Google Scholar 

  • Vo, T. S., Ngo, D. H., & Kim, S. K. (2015). Nutritional and pharmaceutical properties of microalgal spirulina, In S. K. Kim (Ed.), Handbook of marine microalgae: Biotechnology advances (pp. 299–308). Oxford, UK: AP.

    Google Scholar 

  • Watanabe, K., Takihana, N., Aoyagi, H., Hanada, S., Watanabe, Y., Ohmura, N., et al. (2005). Symbiotic association in Chlorella culture. FEMS Microbiology Ecology, 51(2), 187–196.

    Article  CAS  Google Scholar 

  • Wilde, E. W., & Benemann, J. R. (1993). Bioremoval of heavy metals by the use of microalgae. Biotechnology Advances, 11(4), 781–812.

    Article  CAS  Google Scholar 

  • Yamaguchi, K. (1992). Present situation and future direction, In K. Yamaguchi (Ed.), Utilization of microalgae (pp. 9–17). Tokyo, Japan: Kouseisha Kouseikaku Publishing Co.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SK. (2019). Microalgae, a Biological Resource for the Future. In: Essentials of Marine Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-20944-5_7

Download citation

Publish with us

Policies and ethics