Skip to main content

Fish Genetics

  • Chapter
  • First Online:
Essentials of Marine Biotechnology
  • 1021 Accesses

Abstract

Cells have a characteristic structure that is appropriate for performing their individual functions. Sperm cells , for example, have powerful flagella that allow them to swim through a female’s reproductive tract and find the egg. Nerve cells are elongated in shape in order to communicate signals between distant parts of the body. In this way, the different cells in the human body generally support the living individual in its activities (Chalfie et al. 1994).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agris, P. F. (2004). Decoding the genome: A modified view. Nucleic Acids Research, 32(1), 223–238.

    Article  CAS  Google Scholar 

  • Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the future of conservation genetics. Nature Reviews Genetics, 11(10), 697.

    Article  CAS  Google Scholar 

  • Aoki, T. (2000). Gene of fish. In F. Takashita (Ed.), The next generation of fisheries biotechnology (pp. 1–15). Tokyo, Japan: Seizando-shoten Pubilishing Co.

    Google Scholar 

  • Aoki, T., & Miyata, M. (1997). Globin gene. In T. Aoki, et al. (Eds.), DNA of fish: Genetic approach of fish gene molecule (pp. 158–200).

    Google Scholar 

  • Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72(1), 291–336.

    Article  CAS  Google Scholar 

  • Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., & Prasher, D. C. (1994). Green fluorescent protein as a marker for gene expression. Science, 263(5148), 802–805.

    Article  CAS  Google Scholar 

  • Chen, L., DeVries, A. L., & Cheng, C.-H. C. (1997). Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proceedings of the National Academy of Sciences, 94(8), 3811–3816.

    Article  CAS  Google Scholar 

  • Chen, T., & Powers, D. (1990). Transgenic fish. Trends in Biotechnology, 8, 209–215.

    Google Scholar 

  • Cossins, A. R., & Crawford, D. L. (2005). Fish as models for environmental genomics. Nature Reviews Genetics, 6(4), 324.

    Article  CAS  Google Scholar 

  • Crollius, H. R., & Weissenbach, J. (2005). Fish genomics and biology. Genome Research, 15(12), 1675–1682.

    Article  CAS  Google Scholar 

  • Du, S. J., Gong, Z., Fletcher, G. L., Shears, M. A., King, M. J., Idler, D. R., et al. (1992). Growth enhancement in transgenic Atlantic salmon by the use of an “all fish” chimeric growth hormone gene construct. Nature Biotechnology, 10(2), 176.

    Article  CAS  Google Scholar 

  • Gunderson, K. L., Kruglyak, S., Graige, M. S., Garcia, F., Kermani, B. G., Zhao, C., et al. (2004). Decoding randomly ordered DNA arrays. Genome Research, 14(5), 870–877.

    Article  CAS  Google Scholar 

  • Heikkila, J., Schultz, G., Iatrou, K., & Gedamu, L. (1982). Expression of a set of fish genes following heat or metal ion exposure. Journal of Biological Chemistry, 257(20), 12000–12005.

    Article  CAS  Google Scholar 

  • Hudson, A. P., Cuny, G., Cortadas, J., Haschemeyer, A. E., & Bernardi, G. (1980). An analysis of fish genomes by density gradient centrifugation. European Journal of Biochemistry, 112(2), 203–210.

    Article  CAS  Google Scholar 

  • König, J., Zarnack, K., Luscombe, N. M., & Ule, J. (2012). Protein–RNA interactions: New genomic technologies and perspectives. Nature Reviews Genetics, 13(2), 77.

    Article  Google Scholar 

  • Lee, J. Y., Tada, T., Hirono, I., & Aoki, T. (1998). Molecular cloning and evolution of transferrin cDNAs in salmonids. Molecular Marine Biology and Biotechnology, 7(4), 287–293.

    Google Scholar 

  • Liu, H., Takano, T., Abernathy, J., Wang, S., Sha, Z., Jiang, Y., et al. (2010). Structure and expression of transferrin gene of channel catfish, Ictalurus punctatus. Fish & Shellfish Immunology, 28(1), 159–166.

    Article  CAS  Google Scholar 

  • Mikawa, N., Hirono, I., & Aoki, T. (1996). Structure of medaka transferrin gene and its 5’-flanking region. Molecular Marine Biology and Biotechnology, 5(3), 225–9.

    Google Scholar 

  • Miyata, M., & Aoki, T. (1997). Head-to-head linkage of carp α- and β-globin genes. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression, 1354(2), 127–133.

    Google Scholar 

  • Murat, F., Peer, Y. V. D., & Salse, J. (2012). Decoding plant and animal genome plasticity from differential paleo-evolutionary patterns and processes. Genome Biology and Evolution, 4(9), 917–928.

    Article  Google Scholar 

  • Nam, B. H., Yamamoto, E., Hirono, I., & Aoki, T. (2000) A survey of expressed genes in the leukocytes of Japanese flounder, Paralichthys olivaceus, infected with Hirame rhabdovirus. Developmental & Comparative Immunology, 24(1), 13–24.

    Google Scholar 

  • Palti, Y. (2011). Toll-like receptors in bony fish: From genomics to function. Developmental and Comparative Immunology, 35(12), 1263–1272.

    Article  CAS  Google Scholar 

  • Perry, K. L., Watkins, K. P., & Agabian, N. (1987). Trypanosome mRNAs have unusual “cap 4” structures acquired by addition of a spliced leader. Proceedings of the National Academy of Sciences, 84(23), 8190–8194.

    Article  CAS  Google Scholar 

  • Rı́us, C., Smith, J. D., Almendro, N., Langa, C., Botella, L. M., Marchuk, D. A., et al. (1998). Cloning of the promoter region of human endoglin, the target gene for hereditary hemorrhagic telangiectasia type 1. Blood, 92(12), 4677–4690.

    Article  Google Scholar 

  • Rand-weaver, M., Kawachi, H., & Ono, M. (1993). Evolution of structure of the growth hormone and prolactin family. In M. P. Schrebman, C. G. Scanes & P. K. Pang (Eds.), The endocrinology of growth development and metabolism in vertibrates (pp. 13–42). Academic Press: New York.

    Google Scholar 

  • Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 270(5235), 467–470.

    Article  CAS  Google Scholar 

  • Sekine, S., Mizukami, T., Nishi, T., Kuwana, Y., Saito, A., Sato, M., Itoh, S., & Kawauchi, H. (1985). Cloning and expression of cDNA for salmon growth hormone in Escherichia coli. Proceedings of the National Academy of Sciences, 82(13), 4306–4310.

    Google Scholar 

  • Suzumoto, B. K., Schreck, C. B., & McIntyre, J. D. (1977). Relative Resistances of Three Transferrin Genotypes of Coho Salmon (Oncorhynchus kisutch) and their hematological responses to bacterial kidney disease. Journal of the Fisheries Research Board of Canada, 34(1), 1–8.

    Google Scholar 

  • Venkatesh, B., Kirkness, E. F., Loh, Y.-H., Halpern, A. L., Lee, A. P., Johnson, J., et al. (2007). Survey sequencing and comparative analysis of the elephant shark (Callorhinchus milii) genome. PLoS Biology, 5(4), e101.

    Article  Google Scholar 

  • Wittbrodt, J., Meyer, A., & Schartl, M. (1998). More genes in fish? BioEssays, 20(6), 511–515.

    Article  Google Scholar 

  • Yi, D. (2011). Who owns what? Private ownership and the public interest in recombinant DNA technology in the 1970s. Isis, 102(3), 446–474.

    Article  Google Scholar 

  • Young, R. A., Bloom, B. R., Grosskinsky, C. M., Ivanyi, J., Thomas, D., & Davis, R. W. (1985). Dissection of Mycobacterium tuberculosis antigens using recombinant DNA. Proceedings of the National Academy of Sciences, 82(9), 2583–2587.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SK. (2019). Fish Genetics. In: Essentials of Marine Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-20944-5_3

Download citation

Publish with us

Policies and ethics