Skip to main content

Introduction to Molecular Biology

  • Chapter
  • First Online:
Essentials of Marine Biotechnology
  • 1010 Accesses

Abstract

To understand marine biotechnology, it is necessary to understand the genes that determine an organism’s appearance and functions. This chapter will include a brief explanation of the genetics that directly informs biotechnology, as well how genetics has been applied to biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Avery, O. T., MacLeod, C. M., Lederberg, J., Dubos, R., & McCarty, M. (1944). Symposium February 2, 1979. The Journal of Experimental Medicine, 79(2), 137–158.

    Article  CAS  Google Scholar 

  • Bateson, W., & Mendel, G. 2013. Mendel’s principles of heredity. Courier Corporation.

    Google Scholar 

  • Chargaff, E. (1950). Chemical specificity of nucleic acids and mechanism of their enzymatic degradation. Experientia, 6(6), 201–209.

    Article  Google Scholar 

  • Chargaff, E. (2012). The nucleic acids. Elsevier.

    Google Scholar 

  • Galau, G. A., Britten, R. J., & Davidson, E. H. (1974). A measurement of the sequence complexity of polysomal messenger RNA in sea urchin embryos. Cell, 2(1), 9–21.

    Article  CAS  Google Scholar 

  • Gamow, G. (1954). Possible relation between deoxyribonucleic acid and protein structures. Nature, 173(4398), 318.

    Article  CAS  Google Scholar 

  • Goding, J. W. (1996). Monoclonal antibodies: Principles and practice. Elsevier.

    Google Scholar 

  • Griffith, F. (1934). The serological classification of Streptococcus pyogenes. The Journal of Hygiene, 34(4), 542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groth, S. F. d. S., & Scheidegger, D. (1980). Production of monoclonal antibodies: Strategy and tactics. Journal of Immunological Methods, 35(1–2), 1–21.

    Google Scholar 

  • Hershey, A. D., Dixon, J., & Chase, M. (1953). Nucleic acid economy in bacteria infected with bacteriophage T2: I. Purine and pyrimidine composition. The Journal of General Physiology, 36(6), 777–789.

    Google Scholar 

  • Khazaeli, M., Conry, R. M., & LoBuglio, A. F. (1994). Human immune response to monoclonal antibodies. Journal of Immunotherapy with Emphasis on Tumor Immunology: Official Journal of the Society for Biological Therapy, 15(1), 42–52.

    Article  CAS  Google Scholar 

  • Kim, S.-K. (2016). Marine OMICS: Principles and applications. CRC Press.

    Google Scholar 

  • Lesk, A. M. (1969). Why does DNA contain thymine and RNA uracil? Journal of Theoretical Biology, 22(3), 537–540.

    Article  CAS  Google Scholar 

  • Mendel, G. (1996). Experiments in plant hybridization (1865). Verhandlungen des naturforschenden Vereins Brünn. Accessed on January 1, 2013. Available online: www.mendelweb.org/Mendel.html.

  • Mendel, G., Corcos, A. F., & Monaghan, F. V. (1993). Gregor mendel’s experiments on plant hybrids: A guided study. Rutgers University Press.

    Google Scholar 

  • Miescher, F., & Schmiedeberg, O. (1896). Physiologisch-chemische Untersuchungen über die Lachsmilch. Archiv für experimentelle Pathologie und Pharmakologie, 37(2–3), 100–155.

    Google Scholar 

  • Morgan, T. H., Bridges, C. & Sturtevant, A. (1925). The genetics of Drosophila melanogaster. Biblphia Genet, 2(1–262).

    Google Scholar 

  • Orel, V. (1996). Gregor Mendel: The first geneticist. USA: Oxford University Press.

    Google Scholar 

  • Pauling, L., & Delbrück, M. (1940). The nature of the intermolecular forces operative in biological processes. Science, 92(2378), 77–79.

    Article  CAS  Google Scholar 

  • Roberts, R. J., Belfort, M., Bestor, T., Bhagwat, A. S., Bickle, T. A., Bitinaite, J., et al. (2003). A nomenclature for restriction enzymes, DNA methyltransferases, homing endonucleases and their genes. Nucleic Acids Research, 31(7), 1805–1812.

    Article  CAS  Google Scholar 

  • Sutcliffe, J. G. (1978). pBR322 restriction map derived from the DNA sequence: accurate DNA size markers up to 4361 nucleotide pairs long. Nucleic Acids Research, 5(8), 2721–2728.

    Article  CAS  Google Scholar 

  • Wang, K. (2018). DNA-based single-molecule electronics: From concept to function. Journal of functional Biomaterials, 9(1), 8.

    Article  Google Scholar 

  • Watson, J. (2012). The double helix. UK: Hachette.

    Google Scholar 

  • Watson, J. D., & Crick, F. H. (1953). The structure of DNA. In Cold Spring Harbor symposia on quantitative biology (pp. 123–131). Cold Spring Harbor Laboratory Press.

    Google Scholar 

  • Wood, W. B. (1966). Host specificity of DNA produced by Escherichia coli: Bacterial mutations affecting the restriction and modification of DNA. Journal of Molecular Biology, 16(1), 118-IN3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SK. (2019). Introduction to Molecular Biology. In: Essentials of Marine Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-20944-5_2

Download citation

Publish with us

Policies and ethics