Skip to main content

What Is Marine Biotechnology?

  • Chapter
  • First Online:
  • 1086 Accesses

Abstract

We often see terms like “bio” and “biotech” in the newspapers and on TV today. This is obviously an abbreviation for “biotechnology ,” a compound of bio, meaning “life” or “organism,” and “technology.”

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   84.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Borowitzka, M. A. (2013). High-value products from microalgae—Their development and commercialisation. Journal of Applied Phycology, 25, 743–756.

    Article  CAS  Google Scholar 

  • Brown, M., Jeffrey, S., Volkman, J., & Dunstan, G. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151, 315–331.

    Article  CAS  Google Scholar 

  • Carroll, J., & Crews, P. (2009). Macromarines: A selective account of the potential of marine sponges, molluscs, soft corals and tunicates as a source of therapeutically important molecular structures. In D. B. Antony & M. S. Butler (Eds.), Natural product chemistry for drug discovery (pp. 174–214). Cambridge, UK.: The Royal Society of Chemistry.

    Google Scholar 

  • Fusetani, N. (2000). Drugs from the Sea. Karger Medical and Scientific Publishers.

    Google Scholar 

  • Harino, H., Yamamoto, Y., Eguchi, S., Kurokawa, Y., Arai, T., Ohji, M., et al. (2007). Concentrations of antifouling biocides in sediment and mussel samples collected from Otsuchi Bay, Japan. Archives of Environmental Contamination and Toxicology, 52, 179.

    Article  CAS  Google Scholar 

  • Harvey, S., Elashvili, I., Valdes, J. J., Kamely, D., & Chakrabarty, A. (1990). Enhanced removal of Exxon Valdez spilled oil from Alaskan gravel by a microbial surfactant. Nature Biotechnology, 8, 228.

    Article  CAS  Google Scholar 

  • Jha, R. K., & Zi-Rong, X. (2004). Biomedical compounds from marine organisms. Marine Drugs, 2, 123–146.

    Article  CAS  Google Scholar 

  • Jiao, G., Yu, G., Zhang, J., & Ewart, H. S. (2011). Chemical structures and bioactivities of sulfated polysaccharides from marine algae. Marine Drugs, 9, 196–223.

    Article  CAS  Google Scholar 

  • Kim, D., Yang, G.-G., Min, S., & Koh, C.-H. (2014). Social and ecological impacts of the Hebei Spirit oil spill on the west coast of Korea: Implications for compensation and recovery. Ocean and Coastal Management, 102, 533–544.

    Article  Google Scholar 

  • Kim, S.-K., & Lee, C.-G. (2015). Marine bioenergy: Trends and developments. CRC Press.

    Google Scholar 

  • Kim, S.-K., & Venkatesan, J. (2015). Introduction to marine biotechnology. In S.-K. Kim (Ed.), Springer handbook of marine biotechnology (pp. 1–10). Berlin: Springer.

    Chapter  Google Scholar 

  • Lal, R. (2006). Managing soils for feeding a global population of 10 billion. Journal of the Science of Food and Agriculture, 86, 2273–2284.

    Article  Google Scholar 

  • Lee, S.-B., Cho, S.-J., Lee, S.-Y., Paek, K.-H., Kim, J.-A., & Chang, J.-H. (2009). Present status and prospects of marine chemical bioindustries. KSBB Journal, 24, 495–507.

    Google Scholar 

  • Medini, D., Donati, C., Tettelin, H., Masignani, V., & Rappuoli, R. (2005). The microbial pan-genome. Current Opinion in Genetics and Development, 15, 589–594.

    Article  CAS  Google Scholar 

  • Murosaki, T., Noguchi, T., Hashimoto, K., Kakugo, A., Kurokawa, T., Saito, J., et al. (2009). Antifouling properties of tough gels against barnacles in a long-term marine environment experiment. Biofouling, 25, 657–666.

    Article  CAS  Google Scholar 

  • Notoya, M. (2010). Production of biofuel by macroalgae with preservation of marine resources and environment. In Seaweeds and their role in globally changing environments (pp. 217–228). Berlin: Springer.

    Google Scholar 

  • Salazar, A., Hackney, R., & Howells, J. (2003). The strategic impact of internet technology in biotechnology and pharmaceutical firms: Insights from a knowledge management perspective. Information Technology and Management, 4, 289–301.

    Article  Google Scholar 

  • Schultz, M., Bendick, J., Holm, E., & Hertel, W. (2011). Economic impact of biofouling on a naval surface ship. Biofouling, 27, 87–98.

    Article  CAS  Google Scholar 

  • Silverman, H. G., & Roberto, F. F. (2007). Understanding marine mussel adhesion. Marine Biotechnology, 9, 661–681.

    Article  CAS  Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67, 503–549.

    Article  Google Scholar 

  • Venkatesan, J., & Kim, S.-K. (2015). Marine biomaterials. In Springer handbook of marine biotechnology (pp. 1195–1215). Berlin: Springer.

    Google Scholar 

  • Verma, N. M., Mehrotra, S., Shukla, A., & Mishra, B. N. (2010). Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. African Journal of Biotechnology, 9, 1402–1411.

    Article  CAS  Google Scholar 

  • Villa-Carvajal, M., Catalá, M., Barreno, E., & Tornero Martos, A. (2014). Bioproduction of bioactive compounds: Screening of bioproduction conditions of free-living microalgae and lichen symbionts, 10th International Conference on Renewable Resources & Biorefineries.

    Google Scholar 

  • Wijesekara, I., Pangestuti, R., & Kim, S.-K. (2011). Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydrate Polymers, 84, 14–21.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Se-Kwon Kim .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kim, SK. (2019). What Is Marine Biotechnology?. In: Essentials of Marine Biotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-20944-5_1

Download citation

Publish with us

Policies and ethics