Skip to main content

BASIC: Towards a Blockchained Agent-Based SImulator for Cities

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11422))

Abstract

Autonomous Vehicles (AVs), drones and robots will revolutionize our way of travelling and understanding urban space. In order to operate, all of these devices are expected to collect and analyze a lot of sensitive data about our daily activities. However, current operational models for these devices have extensively relied on centralized models of managing these data. The security of these models unveiled significant issues. This paper proposes BASIC, the Blockchained Agent-based Simulator for Cities. This tool aims to verify the feasibility of the use of blockchain in simulated urban scenarios by considering the communication between agents through smart contracts. In order to test the proposed tool, we implemented a car-sharing model within the city of Cambridge (Massachusetts, USA). In this research, the relevant literature was explored, new methods were developed and different solutions were designed and tested. Finally, conclusions about the feasibility of the combination between blockchain technology and agent-based simulations were drawn.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS.

  2. 2.

    http://www.gama-platform.org/.

  3. 3.

    https://bitcoin.org/.

  4. 4.

    https://en.bitcoin.it/wiki/Genesis_block.

  5. 5.

    https://www.ethereum.org/ether.

  6. 6.

    https://www.ethereum.org/.

  7. 7.

    https://en.wikipedia.org/wiki/Smart_contract.

  8. 8.

    https://www.docker.com/.

  9. 9.

    https://github.com/agrignard/Basic.git.

  10. 10.

    https://docker-py.readthedocs.io/en/stable/client.html.

  11. 11.

    https://web3js.readthedocs.io/en/1.0/web3-eth.html.

  12. 12.

    https://github.com/ethereum/go-ethereum/wiki/geth.

  13. 13.

    https://datausa.io/profile/geo/cambridge-ma/.

  14. 14.

    http://www.focas.eu/manifesto/ - FoCAS Manifesto: A roadmap to the future of Collective Adaptive Systems.

References

  1. Żak, J., Hadas, Y., Rossi, R. (eds.): Advanced Concepts, Methodologies and Technologies for Transportation and Logistics. AISC, vol. 572. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-57105-8

    Book  Google Scholar 

  2. Johansson, C., et al.: Impacts on air pollution and health by changing commuting from car to bicycle. Sci. Total Environ. 584–585, 55–63 (2017)

    Article  Google Scholar 

  3. Fiedler, D., Certický, M., Alonso-Mora, J., Cáp, M.: The impact of ridesharing in mobility-on-demand systems: simulation case study in Prague. CoRR, abs/1807.03352 (2018)

    Google Scholar 

  4. Schrank, D., Eisele, B., Lomax, T., Bak, J.: Urban mobility scorecard. Technical report, Texas A&M Transportation Institute (2015)

    Google Scholar 

  5. Seidler, A., et al.: Association between aircraft, road and railway traffic noise and depression in a large case-control study based on secondary data. Environ. Res. 152, 263–271 (2017)

    Article  Google Scholar 

  6. Alonso, L., et al.: CityScope: a data-driven interactive simulation tool for urban design. Use case volpe. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) ICCS 2018. SPC, pp. 253–261. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96661-8_27

    Chapter  Google Scholar 

  7. Chen, X., Zheng, H., Wang, Z., Chen, X.: Exploring impacts of on-demand ridesplitting on mobility via real-world ridesourcing data and questionnaires. Transportation, August 2018

    Google Scholar 

  8. Nijland, H., van Meerkerk, J.: Mobility and environmental impacts of car sharing in the Netherlands. Environ. Innov. Societal Transit. 23, 84–91 (2017)

    Article  Google Scholar 

  9. Giesel, F., Nobis, C.: The impact of carsharing on car ownership in German cities. Transp. Res. Procedia 19, 215–224 (2016)

    Article  Google Scholar 

  10. Fagnant, D.J., Kockelman, K.: Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations. Transp. Res. Part A: Policy Pract. 77, 167–181 (2015)

    Google Scholar 

  11. BBC New: Who is responsible for a driverless car accident? BBC News Online (2015). http://www.bbc.com/news/technology-34475031

  12. Millard-Ball, A.: Pedestrians, autonomous vehicles, and cities. J. Plann. Educ. Res. 38(1), 6–12 (2018)

    Article  Google Scholar 

  13. Haboucha, C.J., Ishaq, R., Shiftan, Y.: User preferences regarding autonomous vehicles. Transp. Res. Part C: Emerg. Technol. 78, 37–49 (2017)

    Article  Google Scholar 

  14. Serra, M.: An exploratory paper of the privacy paradox in the age of big data and emerging technologies. Master’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS) (2018)

    Google Scholar 

  15. Zyskind, G., Nathan, O., Pentland, A.: Decentralizing privacy: using blockchain to protect personal data. In: 2015 IEEE Symposium on Security and Privacy Workshops, SPW 2015, San Jose, CA, USA, 21–22 May 2015, pp. 180–184 (2015)

    Google Scholar 

  16. Oyola, J.O., Hoffman, W., Schwab, K., Marcus, A., Luzi, M.: Personal data: the emergence of a new asset class. In: An Initiative of the World Economic Forum (2011)

    Google Scholar 

  17. Uber’s big data platform: 100+ petabytes with minute latency (2019). https://eng.uber.com/uber-big-data-platform/

  18. Former employees say Lyft staffers spied on passengers (2019). https://techcrunch.com/2018/01/25/lyft-god-view/

  19. Fan, L., Ramon Gil-Garcia, J., Werthmuller, D., Brian Burke, G., Hong, X.: Investigating blockchain as a data management tool for IoT devices in smart city initiatives. In: Proceedings of the 19th Annual International Conference on Digital Government Research: Governance in the Data Age, DG.O 2018, pp. 100:1–100:2. ACM, New York (2018)

    Google Scholar 

  20. Michelin, R.A., et al.: SpeedyChain: a framework for decoupling data from blockchain for smart cities. In: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, MobiQuitous 2018, New York City, NY, USA, 5–7 November 2018, pp. 145–154 (2018)

    Google Scholar 

  21. Castelló Ferrer, E., Rudovic, O., Hardjono, T., Pentland, A.: RoboChain: a secure data-sharing framework for human-robot interaction. CoRR, abs/1802.04480 (2018)

    Google Scholar 

  22. Strobel, V., Ferrer, E.C., Dorigo, M.: Managing byzantine robots via blockchain technology in a swarm robotics collective decision making scenario. In: Proceedings of the 17th International Conference on Autonomous Agents and MultiAgent Systems, AAMAS 2018, Stockholm, Sweden, 10–15 July 2018, pp. 541–549 (2018)

    Google Scholar 

  23. Alphand, O., et al.: IoTChain: a blockchain security architecture for the Internet of Things. In: WCNC, pp. 1–6. IEEE (2018)

    Google Scholar 

  24. Alowayed, Y., Canini, M., Marcos, P., Chiesa, M., Barcellos, M.P.: Picking a partner: a fair blockchain based scoring protocol for autonomous systems. In: Proceedings of the Applied Networking Research Workshop, ANRW 2018, Montreal, QC, Canada, 16 July 2018, pp. 33–39 (2018)

    Google Scholar 

  25. Singh, M., Kim, S.: Branch based blockchain technology in intelligent vehicle. Comput. Netw. 145, 219–231 (2018)

    Article  Google Scholar 

  26. Grignard, A., Alonso, L., Taillandier, P., Gaudou, B., Nguyen-Huu, T., Gruel, W., Larson, K.: The impact of new mobility modes on a city: a generic approach using ABM. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y. (eds.) ICCS 2018. SPC, pp. 272–280. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96661-8_29

    Chapter  Google Scholar 

  27. Alfeo, A.L., et al.: Urban swarms: a new approach for autonomous waste management. CoRR, abs/1810.07910 (2018)

    Google Scholar 

  28. Grignard, A., Taillandier, P., Gaudou, B., Vo, D.A., Huynh, N.Q., Drogoul, A.: GAMA 1.6: advancing the art of complex agent-based modeling and simulation. In: Boella, G., Elkind, E., Savarimuthu, B.T.R., Dignum, F., Purvis, M.K. (eds.) PRIMA 2013. LNCS (LNAI), vol. 8291, pp. 117–131. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-44927-7_9

    Chapter  Google Scholar 

  29. Castelló Ferrer, E.: The blockchain: a new framework for robotic swarm systems. CoRR, abs/1608.00695 (2016)

    Google Scholar 

  30. Bucchiarone, A., De Sanctis, M., Marconi, A., Martinelli, A.: DeMOCAS: domain objects for service-based collective adaptive systems. In: Drira, K., et al. (eds.) ICSOC 2016. LNCS, vol. 10380, pp. 174–178. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68136-8_19

    Chapter  Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No. 751615.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Bucchiarone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marrocco, L. et al. (2019). BASIC: Towards a Blockchained Agent-Based SImulator for Cities. In: Lin, D., Ishida, T., Zambonelli, F., Noda, I. (eds) Massively Multi-Agent Systems II. MMAS 2018. Lecture Notes in Computer Science(), vol 11422. Springer, Cham. https://doi.org/10.1007/978-3-030-20937-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20937-7_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20936-0

  • Online ISBN: 978-3-030-20937-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics