Skip to main content

The Spinal Cord

  • Chapter
  • First Online:

Abstract

This chapter develops the anatomofunctional organization of the gray and white matters according to recent neurophysiological data particularly for analysis and rehabilitation of spinal lesions.

The gray matter includes:

  • the central core characterized by a network organization of interneurons in charge of the basic motor and vegetative programmes essential for the locomotion and the survival of the individual,

  • dorsal expansions responsible for treating pain and temperature information by a complex arrangement explaining pain by nociceptive excess and pain by deafferentation.

  • ventral expansions including motoneurons organized in cellular islets whose actions are intended for skeletal musculature and functionally represent a final common pathway responsible for executing all motor orders of segmental reflex expression and of supraspinal origin that intervene on the strength and direction of movement and on the tone that accompanies movement.

The white matter features the passage of fibers from or to the cord, organized in descending and ascending tracts.

The dorsal column carries epicritic and kinesthetic information, the anterolateral funiculus conveys painful and thermal information, and spinocerebellar tracts occupy the lateral column. These ascending systems can be grouped into three systems, one for information, one for programmation, and a non-specific system for alertness, emotional, and vegetative states.

The descending pathways convey the motor orders that respond to conscious, finalized, voluntary, fine and idiokinetic gestures corresponding to pyramidal corticospinal tracts and non-pyramidal tracts that come from suprasegmental formations of the brain stem where cortical and cerebellar influences are relayed and can be grouped into a medial contingent for postural axial extensor tone and a posterolateral contingent that influences the tone of attitude which facilitates flexors of intermediate segments of the limbs. So, in the pathological situation different states of rigidity can be observed depending on the level of impairment creating by their imbalance, decerebration rigidity, or decortication rigidity.

The lesions of these different fascicules of white matter are responsable for sublesional syndromes observed in pathological situations and lesional syndromes reflects the involvement of gray matter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rexed B. A cytoarchitectonic atlas of the spinal cord in the cat. J Comp Neurol. 1952;96(3):41595.

    Article  Google Scholar 

  2. Defebre L, Kemoun G. Organisation neuroanatomique et physiologique de la marche. Presse Med. 2001;30(9):44551.

    Google Scholar 

  3. Buchanan JT, McPherson DR. The neural network for locomotion lamprey spinal cord. Evidence for involvement of commissural interneurons. J Physiol. 1995;89:22133.

    Google Scholar 

  4. Kiehn O. Locomotor circuits in the mammalian spinal cord. Annu Rev Neurosci. 2006;29:279306.

    Article  Google Scholar 

  5. Stein PSG. Central pattern generator in the spinal cord. In: Davidoff R, editor. Handbook of the spinal cord, vol. 24. New York: Marcel Dekker; 1984. p. 64772.

    Google Scholar 

  6. Frigon A. Central pattern generators of the mammalian spinal cord. Neuroscientist. 2012;18(1):5669.

    Article  Google Scholar 

  7. Pearson K. The control of walking. Sci Am. 1976;33:7286.

    Google Scholar 

  8. Purves D, Augustine GJ, Fitzpatrick D, Katz LC, Lamantia AS, McNamara WM. Lower motor neuron circuits and motor control. Spinal cord circuitry and locomotion. In: Neuroscience. Sunderland: Sinauer Associates; 2001. p. 36168.

    Google Scholar 

  9. Guerin J, Bioulac B. Organisation anatomique et physiologique de la moelle épinière. Anat Clin. 1979;1:26789.

    Article  Google Scholar 

  10. Richard D, Orsal D. La moelle épinière est le siège d’activités automatiques. In: Neurophysiologie. Motricité et grandes fonctions du système nerveux central. Paris: Nathan; 1994. p. 7194.

    Google Scholar 

  11. Delmas A, Laux G. Systeme nerveux sympathique. Etude macroscopique et systématique. Paris: Masson; 1952.

    Google Scholar 

  12. Guerin J, Bioulac B, Henry P, Loiseau P. Le système nerveux végétatif. Anatomie, physiologie, pathologie. Paris: Sandoz; 1979.

    Google Scholar 

  13. Guerin J. Voies et centres du système nerveux autonome. In: Bossy J, editor. Anatomie clinique neuroanatomie. Paris: Springer; 1990. p. 291303.

    Google Scholar 

  14. Price DD. Dorsal horn mechanisms of pain. In: Davidoff R, editor. Handbook of the spinal cord, vol. 24. New York: Marcel Dekker; 1984. p. 75177.

    Google Scholar 

  15. Melzack R, Wall PD. Pain mechanism. A new theory. Science. 1965;15:97179.

    Google Scholar 

  16. Basbaum AL, Fields HL. Endogenous pain control systems. Brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–38.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guérin, J. (2020). The Spinal Cord. In: Vital, J., Cawley, D. (eds) Spinal Anatomy . Springer, Cham. https://doi.org/10.1007/978-3-030-20925-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20925-4_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20924-7

  • Online ISBN: 978-3-030-20925-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics