Skip to main content

Vertebral Column: Muscles, Aponeurosis, and Fascia

  • Chapter
  • First Online:
Spinal Anatomy

Abstract

The anatomical complexity of the muscles of the vertebral column is subtended by a concept based on muscle–aponeurosis–tendon synergy. To adapt, each segment presents a curve which provides a state of pretension of defined shape, organized to counterbalance the pre-forecast strain so as to avoid rupture. The chief function in the maintenance of this attitude is evident in the muscle posture, in particular small permanent contractions of the muscles of the vertebral column and the lower limb. Muscles and their aponeurosis ensure the stability according to an automatic control by the action of the extrapyramidal system. Dissections show in all cases the presence of aponeurosis with two types of fascicles which insert in the axis of aponeurosis and laterally according to the principle of unipennate or bipennate muscles. Aponeurosis is a complementary structure for the muscle. The fascicles insert in the axis of the aponeurosis obliquely to distribute the mechanical strain avoiding a break during muscle contraction, on its entire length. For the aponeurosis, it appears that the forces of tension are highest in the two extremities of muscle than in its middle. Its behavior varies between passive motion and active motion. The knowledge about its properties is essential to understand changes to the length of the fascicule or the sarcomere. During the modeling of the muscle-tendon complex, the variations in length were observed in the changes between the fascicules and the muscle length including elastic compliance according to the concept of Hill. This concept is reinforced by the junction between aponeurosis and tendon which has a conical shape in order to spread strains harmoniously. In the standing position, the aponeurosis is considered as a passive rope which maintains articular equilibrium without involving the muscle contraction which would result in a high level of expensive power. The elongation of muscle depends on the properties of aponeurosis which is an important element as a factor of storage of power and its usage during muscle contraction. With a greater angle of pennation, the less (obtuse angle) the strength and, on the contrary, an acute angle pennation increases its power.

The anatomy of the muscle is inseparable from the study of the aponeurosis and of the tendon which constitute the elements of transmission and regulation of power and joint displacement. The new concept involving the contractile components and elasticity of the muscle complex-aponeurosis are at the basis of the programmes of modeling in the understanding of the pathology. Three-dimensional explorations should improve our knowledge on the condition including the spinal column in its functional whole with individual variability. After the progress in its understanding and in its applications in biology, the model of “tenségrité” will represent the most relevant concepts for the understanding of the musculo-skeletal system with two structure-function couples involving “tension-cohesion” and “compression-strength.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zajac F, Winters J. Modelling musculoskeletal movement systems: joint and body segmental dynamics, musculoskeletal actuation, and neuromuscular control. In: Winters JM, Woo SLY, editors. Multiple muscle systems, biomechanics and movement organization. New York: Springer; 1990. p. 121–34.

    Chapter  Google Scholar 

  2. Ettema GJC, Huijing PA. Properties of the tendinous structures and the elastic component of EDL muscle-tendon complex of the rat. J Biomech. 1989;22:1209–15.

    Article  CAS  PubMed  Google Scholar 

  3. Winkler G. The ilio-costal muscle. Study of its structure and its morphology according to the curvatures of the rachis. Arch Anat Histol Embryol. 1936;21:143–252.

    Google Scholar 

  4. Gracovetsky S. Musculoskeletal function of the spine. In: Winters JM, editor. Multiple muscle systems, vol. 25. New York: Springer; 1990. p. 411–37.

    Google Scholar 

  5. Delp SL, Anderson F, Arnold AS, et al. OpenSim: open source software to create and analyze dynamic simulation of movement. IEEE Trans Biomed Eng. 1990;37(8):757–67.

    Article  CAS  PubMed  Google Scholar 

  6. Chrystophy M, Wiemann K, Klee A. Die Bedeutung von dehnen und stretching in der aufwärmphase vor Hochsstleistungen. Leistungssport. 2000;4:5–9.

    Google Scholar 

  7. Dionis A. Demonstrations of anatomy. Paris: House of Saint Come; 1690.

    Google Scholar 

  8. Heister A. The anatomy of Heister with physical tests on the use of parts of the human body. In Paris at Vincent, 5 rue S. Severin at the Angel 1753; with approval and privilege of the King.

    Google Scholar 

  9. Spigelius A. De humani corporis fabrica. Brussels; 1578.

    Google Scholar 

  10. Stenonis N. From ossibus musculis, from motu animalium. Pars prima, Bibliotheca anatomica. Geneva: Joannis Anthonii Chovet; 1685. p. 527–52.

    Google Scholar 

  11. Borelli J. From motu animalium. From externis animal. Pars prima, Bibliotheca anatomica, Geneva: Joannis Anthonii Chovet; 1685. p. 817–910.

    Google Scholar 

  12. Trolard P. The spinal muscles and in particular the transverse spiny muscles. Algiers, Casabianca printing, rue du commerce; 1892.

    Google Scholar 

  13. Fick R. Handbuch der Anatomy und Mechanik der Gelenke unter Berucksichtigung der bewegenden Muskein. 1904–1911. Vol. 3. Specielle gelenk und muskelein Mechanik. Jena: Gustav Fischer; 1911.

    Google Scholar 

  14. Von Lanz T, Wachsmuth W. Praktische anatomy. Erxter Kand, Driter Teil: Arm. Berlin: Springer; 1935. p. 154–243.

    Google Scholar 

  15. Bonnel F. Muscles and joints (law of three-dimensional articular dynamic centering). In: Muscle and sport: Springer; 1992. p. 277–98.

    Google Scholar 

  16. Alonso S. Regulatory factors specific to myogenesis. Med Sci. 1990;6:635–44.

    Google Scholar 

  17. Bergmark A. Stability of the lumbar spine. A study in mechanical engineering. Acta Orthop Scand. 1989;230:581–10.

    Google Scholar 

  18. Nitz AJ, Pick D. Comparison of muscle spindle concentrations in large and small human epaxial muscle acting in parallel combinations. Am Surg. 1986;52:273–7.

    CAS  PubMed  Google Scholar 

  19. Chaussier quoted by Sappey Ph. Descriptive anatomy. Paris: Delahaye & Cie; 1876. p. 52.

    Google Scholar 

  20. Theile P. Cited by Sappey Ph. Descriptive anatomy. Paris: Delahaye & Cie; 1876. p. 52.

    Google Scholar 

  21. Sappey PH. Descriptive anatomy treaty. Paris: Delahaye & Cie; 1876.

    Google Scholar 

  22. Sylvius A. Quoted by Sappey Ph. Descriptive anatomy. Paris: Delahaye & Cie; 1876. p. 52.

    Google Scholar 

  23. Galien (Galen). Anatomical, physiological, scientific, medical works, translated by Ch. Daremt, editors. Paris: Baillière; 1854.

    Google Scholar 

  24. Vésale A. De Humani corporis fabrica libri septem. Basileae: Joannis Oporinus; 1543.

    Google Scholar 

  25. Cruveilhier J. Anatomy treaty. 1st ed. Paris: Bechet Jeune; 1837.

    Google Scholar 

  26. Squire JM. The structural basis of muscular contraction. New York, NY: Plenum; 1981.

    Book  Google Scholar 

  27. Lieber RL. Muscle fiber length and moment arm coordination during dorsi and plantar flexion in the mouse hindlimb. Acta Anat. 1997;159:84–9.

    Article  CAS  PubMed  Google Scholar 

  28. Huijing PA, Ettema JC. Inflammatory muscle contractions of the rat and the muscles of the gastrocnemius muscle. Acta Morphol Neerl Scand. 1989;26:51–62.

    CAS  Google Scholar 

  29. Friden J, Lieber RL. Eccentric exercise-induced injuries to contractile and cytoskeletal muscle fiber components. Acta Physiol Scand. 2001;171(3):321–6.

    Article  CAS  PubMed  Google Scholar 

  30. Huxley H. The mechanism of muscular contraction. Science. 1969;164:1356.

    Article  CAS  PubMed  Google Scholar 

  31. Alexander RM, Vernon A. The dimensions of knee and ankle muscles and the forces they exert. J Hum Mov Stud. 1975;1:115–23.

    Google Scholar 

  32. Bogduck N, Macintosh JE, Pearcy MJ. A universal model of the lumbar back in the upright position. Spine. 1992;17(8):897–913.

    Article  Google Scholar 

  33. Boyer Cited by Chaussier Summary exposure of the muscles of the human body. Thesis n ° 507. Dijon; 1789.

    Google Scholar 

  34. Gauthier G, Padykulah A. Cytological studies of fiber types in skeletal muscle: a comparative study of mammalian diaphragm. J Cell Biol. 1966;28:333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jewel BR, Wilkie DR. The mechanical properties of relaxing muscle. J Physiol. 1960;152:30–47.

    Article  Google Scholar 

  36. Cruveilhier J. Anatomy treaty. 3rd ed. Paris: Bechet Young; 1847.

    Google Scholar 

  37. Hill AV. First and last experiments in muscle mechanics. Cambridge: Cambridge University Press; 1970.

    Google Scholar 

  38. Enlow DH. Wolff’s law and the factor of architectonic circumstance. Am J Orthod. 1968;54:803–22.

    Article  CAS  PubMed  Google Scholar 

  39. Philips S, Bogduk RV. Anatomy and biomechanics of lumborum quadrates. Proc Inst Mech Eng H. 2000;222(2):151–9.

    Article  Google Scholar 

  40. Yamagushi GT, Sawa AGU, Moran DW, Fessler MJ, Winters JM. A survey of human musculotendon actuator parameters. In: Winters JM, Woo SLY, editors. Multiple muscle systems, biomechanics and movement organization. New York: Springer; 1990. p. 717–25.

    Google Scholar 

  41. Fukunaga T, Ichinose Y, Ito M, Kawakami Y, Fukashiro S. Determination of fascicle length and pennation in a contracting human muscle in vivo. J Appl Physiol. 1997;82(1):354–8.

    Article  CAS  PubMed  Google Scholar 

  42. Bogduk N, Johnson G, Spalding D. The morphology and biomechanics of latissimus dorsi. Clin Biomech. 1998;13(6):377–85.

    Article  Google Scholar 

  43. Rouvière H. Architecture of striated muscles. Law of direction of fleshy fibers and tendinous fibers. Ann Anat Pathol. 1936;9:1–5.

    Google Scholar 

  44. Blix M. Die Lange und die Spannung of the Muskels. Skand Arch Physiol. 1891;3:295–318.

    Article  Google Scholar 

  45. Cheney RA, Melaragno PG, Prayson MJ. Anatomic investigation of the deep posterior compartment of the leg. Foot Ankle Int. 1998;19(2):98–101.

    Article  CAS  PubMed  Google Scholar 

  46. Maughan RJ, Watson JS, Weir J. Strength and cross-sectional area of human skeletal muscle. J Physiol. 1983;338:37–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wickiewicz TL, Roy RR, Powell PL, Edgerton VR. Muscle architecture of the human lower limb. Clin Orthop Res. 1983;179:275–83.

    Article  Google Scholar 

  48. Scott S, Winter D. A comparison of three muscle pennants and their effect on isometric and isotonic force. J Biomech. 1991;24(2):163–7.

    Article  CAS  PubMed  Google Scholar 

  49. Haxton HA. Absolute muscle strength in the ankle flexors of man. J Physiol. 1944;103:267–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jansen M. On bone formation: its relation to tension and pressure. London: Longmans; 1920.

    Google Scholar 

  51. Frost HM. Bone remodelling dynamics. Springfield, IL: C.C. Thomas; 1963.

    Google Scholar 

  52. Winters JM, Stark L. Estimated mechanical properties of synergistic muscles involved movements of a variety of human joints. J Biomech. 1988;21:1027–41.

    Article  CAS  PubMed  Google Scholar 

  53. Bonnel F, Marc TH. Muscle: new concepts, anatomy-biomechanics-surgery-reeducation. Montpellier: Medical Sauramps; 2009.

    Google Scholar 

  54. Scott SH, Engstrom CM, Loeb GE. Morphometry of human thigh muscles. Determination of fascicle architecture by magnetic resonance imaging. J Anat. 1993;182(2):249–57.

    PubMed  PubMed Central  Google Scholar 

  55. Jewel BR, Wilkie DR. An analysis of the mechanical components in frog’s striated muscle. J Physiol. 1958;143:515–40.

    Article  Google Scholar 

  56. Morgan DL, Proske U, Wamen D. Measurements of muscle stiffness and the mechanism of elastic storage of energy in hopping kangaroos. J Physiol. 1978;282:253–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gregory L, Veeger HE, Huijing PA, Ingen Schenau GJ, et al. Int J Sports Med. 1984;5:301–5.

    Article  Google Scholar 

  58. Bichat X. Treatise on descriptive anatomy. Paris: Gabon & Cie; 1801.

    Google Scholar 

  59. Winters JM, Stark L. Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng. 1985;32:826–39.

    Article  CAS  PubMed  Google Scholar 

  60. Kelsey JL, White AA. Epidemiology and the impact of low back pain. Spine. 1980;5:133–48.

    Article  CAS  PubMed  Google Scholar 

  61. Ashton-Miller JA, Schultz AB. Biomechanics of the human spine and trunk. Exerc Sport Sci Rev. 1988;16:169–204.

    Article  CAS  PubMed  Google Scholar 

  62. Crisco JJ, Panjabi MM. Postural biomechanical stability and gross muscular architecture in the spine. In: Multiple muscle systems. New York: Springer; 1990. p. 438–50.

    Chapter  Google Scholar 

  63. Seireg A, Arvikar R. Biomechanical analysis of the musculoskeletal structure for medicine and sport. New York: Hemisphere Publishing Corporation; 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bonnel, F., Dimeglio, A. (2020). Vertebral Column: Muscles, Aponeurosis, and Fascia. In: Vital, J., Cawley, D. (eds) Spinal Anatomy . Springer, Cham. https://doi.org/10.1007/978-3-030-20925-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20925-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20924-7

  • Online ISBN: 978-3-030-20925-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics