Skip to main content

Brassica Napus Florescence Modeling Based on Modified Vegetation Index Using Sentinel-2 Imagery

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11509))

Abstract

The paper aims to discuss the difficulties with vegetation indices determined using satellite imagery of Brassica napus crops. Data used in the study was registered by Sentinel-2 satellite. Differential evolution method was used for vegetation model fitting for numerous monitored fields. In specific cases that procedure allowed to determine parameters even with a very limited number of clear images. Crop vegetation modeling using only NDVI (Normalized Differential Vegetation Index) or solely on EVI (Enhanced Vegetation Index) is often problematic while these indices are not resistant to imagery issues caused by clouds and cloud shadows registered on earth surface. To overcome the limitations of those indices the novel index MSVI (Maxima Standardized Vegetation Index) was proposed. Robust regression was used to find its optimal parameters for individual fields. To verify the presented methodology a set of satellite images of Grudziądz area (northern Poland) for the period 1st to 25th of May 2018 was used, with 6373 fields of Brassica napus that were analyzed. According to the conducted experiments, the median value of absolute error of the florescence date estimated using the proposed methodology was only 0.421 days and was significantly lower to those calculated using conventional indices: NDVI or EVI - 1.191 and 14.128 days respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Basili, M., Rossi, M.A.: Brassica carinata-derived biodiesel production: economics, sustainability and policies. Italian case. J. Cleaner Prod. 191, 40–47 (2018). https://doi.org/10.1016/j.jclepro.2018.03.306

    Article  Google Scholar 

  2. Szczęsna, T., Rybak-Chmielewska, H., Waś, E., Kachaniuk, K., Teper, D.: Characteristics of Polish unifloral honeys. I. Rape honey (Brassica napus L. var. oleifera Metzger). J. Apic. Sci. 55(1), 111–119 (2011)

    Google Scholar 

  3. Wang, N., et al.: Flowering time variation in oilseed rape (Brassica napus L.) is associated with allelic variation in the FRIGIDA homologue BnaA.FRI.a. J. Exp. Botany 62(15), 5641–5658 (2011). https://doi.org/10.1093/jxb/err249

    Article  Google Scholar 

  4. Peschechera, G., Fratino, U.: Calibration of CLAIR model by means of Sentinel-2 LAI data for analysing wheat crops through Landsat-8 surface reflectance data. In: Gervasi, O., et al. (eds.) ICCSA 2018. LNCS, vol. 10964, pp. 294–304. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95174-4_24

    Chapter  Google Scholar 

  5. Sakowska, K., Juszczak, R., Gianelle, D.: Remote sensing of grassland biophysical parameters in the context of the Sentinel-2 satellite mission. J. Sens. 2016 (2016). https://doi.org/10.1155/2016/4612809

    Article  Google Scholar 

  6. Modica, G., Pollino, M., Solano, F.: Sentinel-2 imagery for mapping cork oak (Quercus suber L.) distribution in Calabria (Italy): capabilities and quantitative estimation. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 100, pp. 60–67. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92099-3_8

    Chapter  Google Scholar 

  7. European Space Agency: MultiSpectral Instrument (MSI) Overview (2018). earth.esa.int/web/sentinel/technical-guides/sentinel-2-msi/msi-instrument

  8. Rouse, J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Prog. Rep. RSC 1978-1, Remote Sensing Center, Texas A&M University, College Station, nr E73-106393, 93 (NTIS No. E73-106393) (1973)

    Google Scholar 

  9. Liu, H.Q., Huete, A.: Feedback based modification of the NDVI to minimize canopy background and atmospheric noise. IEEE Trans. Geosci. Remote Sens. 33(2), 457–465 (1995)

    Google Scholar 

  10. TBRS team, MODIS Vegetation Indices, The University of Arizona (2002). tbrs.arizona.edu

  11. Saputroa, D.R.S., Widyaningsih, P.: Limited memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) method for the parameter estimation on geographically weighted ordinal logistic regression model (GWOLR). In: AIP Conference Proceedings, vol. 1868 (2017). https://doi.org/10.1063/1.4995124

  12. Storn, R., Price, K.: Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J. Global Opt. 11, 341–359 (1997)

    Article  MathSciNet  Google Scholar 

  13. Xue, J., Su, B.: Significant remote sensing vegetation indices: a review of developments and applications. J. Sens. 2017 (2017). https://doi.org/10.1155/2017/1353691

    Article  Google Scholar 

  14. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, Hoboken (2003)

    Google Scholar 

  15. Brown, M.B., Forsythe, A.B.: Robust tests for equality of variances. J. Am. Stat. Assoc. 69, 364–367 (1974). https://doi.org/10.1080/01621459.1974.10482955

    Article  Google Scholar 

  16. Belgiua, M., Csillik, O.: Sentinel-2 cropland mapping using pixel-based and object-based time-weighted dynamic time warping analysis. Remote Sens. Environ. 204 (2018). https://doi.org/10.1016/j.rse.2017.10.005

    Article  Google Scholar 

  17. Garroutte, E.L., Hansen, A.J., Lawrence, R.L.: Using NDVI and EVI to map spatiotemporal variation in the biomass and quality of forage for migratory elk in the greater yellowstone ecosystem. Remote Sens. 8(5) (2016). https://doi.org/10.3390/rs8050404s

Download references

Acknowledgments

Słapek, Smykała and Ruszczak were supported by European Regional Development Fund grant no.: RPOP.01.01.00-16-0056/16-00.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Ruszczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Słapek, M., Smykała, K., Ruszczak, B. (2019). Brassica Napus Florescence Modeling Based on Modified Vegetation Index Using Sentinel-2 Imagery. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics