Skip to main content

A Greedy Algorithm for Extraction of Handwritten Strokes

  • Conference paper
  • First Online:
Book cover Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

This paper presents an algorithm for the extraction of handwritten strokes from a binary image. Each stroke is represented by a family of discs covering the area of the handwritten word. These discs are selected and connected to each other using heuristic (especially greedy) techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartczuk, Ł., Dziwiński, P., Red’ko, V.G.: The concept on nonlinear modelling of dynamic objects based on state transition algorithm and genetic programming. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2017. LNCS (LNAI), vol. 10246, pp. 209–220. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59060-8_20

    Chapter  Google Scholar 

  2. Bilski, J., Smoląg, J., Żurada, J.M.: Parallel approach to the levenberg-marquardt learning algorithm for feedforward neural networks. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2015. LNCS (LNAI), vol. 9119, pp. 3–14. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19324-3_1

    Chapter  MATH  Google Scholar 

  3. Bustamam, A., Sarwinda, D., Ardenaswari, G.: Texture and gene expression analysis of the MRI brain in detection of alzheimer’s disease. J. Artif. Intell. Soft Comput. Res. 8(2), 111–120 (2018)

    Article  Google Scholar 

  4. de Souza, G.B., da Silva Santos, D.F., Pires, R.G., Marananil, A.N., Papa, J.P.: Deep features extraction for robust fingerprint spoofing attack detection. J. Artif. Intell. Soft Comput. Res. 9(1), 41–49 (2019)

    Article  Google Scholar 

  5. Dinh, M., Yang, H.-J., Lee, G.-S., Kim, S.-H., Do, L.-N.: Recovery of drawing order from multi-stroke english handwritten images based on graph models and ambiguous zone analysis. Expert Syst. Appl. 64, 352–364 (2016)

    Article  Google Scholar 

  6. Gabryel, M.: The bag-of-words method with different types of image features and dictionary analysis. J. Univ. Comput. Sci. 24(4), 357–371 (2018)

    MathSciNet  Google Scholar 

  7. Hou, Y., Holder, L.B.: On graph mining with deep learning: introducing model R for link weight prediction. J. Artif. Intell. Soft Comput. Res. 9(1), 21–40 (2019)

    Article  Google Scholar 

  8. Ke, Y., Hagiwara, M.: An english neural network that learns texts, finds hidden knowledge, and answers questions. J. Artif. Intell. Soft Comput. Res. 7(4), 229–242 (2017)

    Article  Google Scholar 

  9. L’Homer, E.: Extraction of strokes in handwritten characters. Pattern Recogn. 33, 1147–1160 (2000)

    Article  Google Scholar 

  10. Phan, D., Na, I.-S., Kim, S.-H., Lee, G.-S., Yang, H.-J.: Triangulation based skeletonization and trajectory recovery for handwritten character patterns. KSII Trans. Internet Inf. Syst. 9, 358–377 (2015)

    Google Scholar 

  11. Plamondon, R., Srihari, S.N.: Online and off-line handwriting recognition: a comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 22(1), 63–84 (2000)

    Article  Google Scholar 

  12. Riid, A., Preden, J.-S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017)

    Article  Google Scholar 

  13. Wróbel, M., Nieszporek, K., Starczewski, J.T., Cader, A.: A fuzzy measure for recognition of handwritten letter strokes. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2018. LNCS (LNAI), vol. 10841, pp. 761–770. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91253-0_70

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michał Wróbel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wróbel, M., Starczewski, J.T., Nieszporek, K., Opiełka, P., Kaźmierczak, A. (2019). A Greedy Algorithm for Extraction of Handwritten Strokes. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11509. Springer, Cham. https://doi.org/10.1007/978-3-030-20915-5_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20915-5_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20914-8

  • Online ISBN: 978-3-030-20915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics