Skip to main content

Fuzzy Reasoning in Control and Diagnostics of a Turbine Engine – A Case Study

  • Conference paper
  • First Online:
Artificial Intelligence and Soft Computing (ICAISC 2019)

Abstract

The article presents selected cases of application of fuzzy-logic techniques in technological process control. It presents the possibilities of supporting manufacturers of road machines for road drying with innovative solutions in the field of artificial intelligence. It presents an algorithmic approach to determine the quality (welfare) of the device, taking into account important process parameters, processed with the use of fuzzy-logic technique. The methodology for controlling the rotation of the turbine engine in the initial phase of its start-up is presented, using rules based on fuzzy logic. The results of the calculations are presented in a graphical form, friendly to interpretation by users and machine manufacturer. The article discusses the technical aspects of the TORGOS road machine control system, indicating the multifunctionality of the authors’ controller and its software.

The authors would like to thank PHU CEMAR Import-Export for kind permission to publish joint research results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mostly high-speed ball bearing.

References

  1. Beg, I., Rashid, T.: Modelling uncertainties in multi-criteria decision making using distance measure and topsis for hesitant fuzzy sets. J. Artif. Intell. Soft Comput. Res. 7(2), 103–109 (2017). https://content.sciendo.com/view/journals/jaiscr/7/2/article-p103.xml

    Article  Google Scholar 

  2. Cpalka, K., Rutkowski, L.: Flexible Takagi-Sugeno fuzzy systems. In: Proceedings of IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1764–1769. IEEE (2005)

    Google Scholar 

  3. \(^{\text{TM}}\) Aniello, G., Gaeta, M., Loia, F., Reformat, M., Toti, D.: An environment for collective perception based on fuzzy and semantic approaches. J. Artif. Intell. Soft Comput. Res. 8(3), 191–210 (2018). https://content.sciendo.com/view/journals/jaiscr/8/3/article-p191.xml

  4. Ferdaus, M.M., Anavatti, S.G., Garratt, M.A., Pratama, M.: Development of c-means clustering based adaptive fuzzy controller for a flapping wing micro air vehicle. J. Artif. Intell. Soft Comput. Res. 9(2), 99–109 (2019). https://content.sciendo.com/view/journals/jaiscr/9/2/article-p99.xml

    Article  Google Scholar 

  5. Huang, Y.C., Sun, H.C.: Dissolved gas analysis of mineral oil for power transformer fault diagnosis using fuzzy logic. IEEE Trans. Dielectr. Electr. Insul. 20(3), 974–981 (2013)

    Article  Google Scholar 

  6. Kacprzyk, J.: Multistage Fuzzy Control: A Prescriptive Approach. Wiley, New York (1997)

    MATH  Google Scholar 

  7. Liu, M., Cao, X., Shi, P.: Fault estimation and tolerant control for fuzzy stochastic systems. IEEE Trans. Fuzzy Syst. 21(2), 221–229 (2013)

    Article  Google Scholar 

  8. PHU Cemar Import-Export: Webpage (2019). http://cemar.pro/

  9. Prasad, M., Liu, Y.T., Li, D.L., Lin, C.T., Shah, R.R., Kaiwartya, O.P.: A new mechanism for data visualization with TSK-type preprocessed collaborative fuzzy rule based system. J. Artif. Intell. Soft Comput. Res. 7(1), 33–46 (2017). https://content.sciendo.com/view/journals/jaiscr/7/1/article-p33.xml

    Article  Google Scholar 

  10. Rafajlowicz, E.: Optimal experiment design for identification of linear distributed-parameter systems: frequency domain approach. IEEE Trans. Autom. Control 28(7), 806–808 (1983)

    Article  MathSciNet  Google Scholar 

  11. Rafajłowicz, E., Skubalska-Rafajłowicz, E.: RBF nets for approximating an object’s boundary by image random sampling. Nonlinear Anal. Theor. Methods Appl. 71(12), e1247–e1254 (2009)

    Article  Google Scholar 

  12. Rafajłowicz, E., Wietrzych, J., Rafajłowicz, W.: A computer vision system for evaluation of high temperature corrosion damages in steam boilers. In: Korbicz, J., Kowal, M. (eds.) Intelligent Systems in Technical and Medical Diagnostics. AISC, vol. 230, pp. 391–402. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-39881-0_33

    Chapter  Google Scholar 

  13. Riid, A., Preden, J.S.: Design of fuzzy rule-based classifiers through granulation and consolidation. J. Artif. Intell. Soft Comput. Res. 7(2), 137–147 (2017). https://content.sciendo.com/view/journals/jaiscr/7/2/article-p137.xml

    Article  Google Scholar 

  14. Rutkowski, L., Cpałka, K.: A neuro-fuzzy controller with a compromise fuzzy reasoning. Control Cybern. 31(2), 297–308 (2002)

    MATH  Google Scholar 

  15. Rutkowski, L.: Flexible Neuro-fuzzy Systems: Structures, Learning and Performance Evaluation, vol. 771. Springer, New York (2006). https://doi.org/10.1007/b115533

    Book  MATH  Google Scholar 

  16. Rzeszuciński, P., Orman, M., Pinto, C., Krishnamoorthi, K.: Wykrywanie uszkodzeń łożysk tocznych z wykorzystaniem sygnałów akustycznych rejestrowanych telefonem komórkowym. Maszyny Elektryczne - Zeszyty Problemowe 2(110), 163–168 (2016)

    Google Scholar 

  17. Starczyński, J., Sułowicz, M.: Wykrywanie uszkodzeń w silnikach indukcyjnych w oparciu o sygnały akustyczne. Maszyny Elektryczne - Zeszyty Problemowe 4(108), 149–156 (2015)

    Google Scholar 

  18. Zhao, Y., Liu, Q.: A continuous-time distributed algorithm for solving a class of decomposable nonconvex quadratic programming. J. Artif. Intell. Soft Comput. Res. 8(4), 283–291 (2018). https://content.sciendo.com/view/journals/jaiscr/8/4/article-p283.xml

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Rafajłowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rafajłowicz, W., Domski, W., Jabłoński, A., Ratajczak, A., Tarnawski, W., Zajda, Z. (2019). Fuzzy Reasoning in Control and Diagnostics of a Turbine Engine – A Case Study. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J. (eds) Artificial Intelligence and Soft Computing. ICAISC 2019. Lecture Notes in Computer Science(), vol 11508. Springer, Cham. https://doi.org/10.1007/978-3-030-20912-4_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20912-4_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20911-7

  • Online ISBN: 978-3-030-20912-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics