Skip to main content

Abstract

A fundamental characteristic of a PV system is that power is produced only when sunlight is available. For systems in which the PV is the only generation source, storage is typically needed since an exact match between available sunlight and the load is limited to a few types of systems – for example, powering a cooling fan. In hybrid or grid-connected systems, where batteries energy storage (BESs) are not inherently required, they may be beneficially included for load matching or power conditioning. By far the most common type of storage is chemical storage, in the form of a battery energy storage (BES), although in some cases other forms of storage can be used [24]. For example, for small, short-term storage, a flywheel or capacitor can be used for storage, or for specific, single-purpose PV systems, such as water pumping or refrigeration, storage can be in the form of water or ice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. O. Hazem Mohammed, Y. Amirat, M. Benbouzid, G. Feld, T. Tang, A.A. Elbaset, Optimal design of a stand-alone hybrid PV/fuel cell power system for the city of Brest in France. Int. J. Energy Convers. 2(1), 1–7 (2014)

    Google Scholar 

  2. S. Pati, S.K. Kar, K.B. Mohanty, D. Panda, Voltage and frequency stabilization of a micro hydro –PV based hybrid micro grid using STATCOM equipped with battery energy storage system. IEEE Int. Conf. Power Electron. Drives Energy Syst. PEDES 2016. 2016(January), 1–5 (2017)

    Google Scholar 

  3. A. McEvoy, T. Markvart, L. Castaner, Chapter IIB-2 – Batteries in PV systems, in Practical Handbook of Photovoltaics: Fundamentals and Applications, (Academic Press, Amsterdam/Boston, 2012)

    Google Scholar 

  4. S. Sumathi, L. Ashok Kumar, P. Surekha, Solar PV and Wind Energy Conversion Systems (Springer, Cham, 2015)

    Book  Google Scholar 

  5. D. Photovoltaics, Draft Guide for Test and Evaluation of Lead-Acid Batteries Used in Photovoltaic (PV) Hybrid Power Systems, 2006

    Google Scholar 

  6. U. Sangpanich, A novel method of decentralized battery energy management for stand-alone PV-battery systems, in Power and Energy Engineering Conference (APPEEC), 2014 IEEE PES Asia-Pacific, 2014, pp. 1–5

    Google Scholar 

  7. B.P. Roberts, Sodium-Sulfur (NaS) batteries for utility energy storage applications, in Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century, 2008 IEEE, 2008, pp. 1–2

    Google Scholar 

  8. G.J. May, A. Davidson, B. Monahov, Lead batteries for utility energy storage: A review. J. Energy Storage 15, 145–157 (2018)

    Article  Google Scholar 

  9. H. Ibrahim, A. Ilinca, J. Perron, Energy storage systems-characteristics and comparisons. Renew. Sust. Energ. Rev. 12(5), 1221–1250 (2008)

    Article  Google Scholar 

  10. The Photovoltaic Education Network, Operation of Lead Acid Batteries | PVEducation. [Online]. Available: https://www.pveducation.org/pvcdrom/lead-acid-batteries/operation-of-lead-acid-batteries. Accessed Jan 03 2019

  11. T.B. Issa, P. Singh, M.V. Baker, T. Lee, Potentiometric measurement of state-of-charge of lead-acid batteries using polymeric ferrocene and quinones derivatives. J. Analytical Sci. Methods Instrum. 4(December), 110–118 (2014)

    Google Scholar 

  12. D. Berndt, Maintenance-Free Batteries: Lead-Acid, Nickel-Cadmium, Nickel-Hydride... (Research Studies Press, Taunton, 1994)

    Google Scholar 

  13. J. Weniger, T. Tjaden, V. Quaschning, Sizing of residential PV battery systems. Energy Procedia 46, 78–87 (2014)

    Article  Google Scholar 

  14. NA, How to Design Solar PV System – Guide for sizing your solar photovoltaic system, Leonics Co., Ltd., 2013. [Online]. Available: http://www.leonics.com/support/article2_12j/articles2_12j_en.php. Accessed Jan 04 2019

  15. F. Rafik, H. Gualous, R. Gallay, A. Crausaz, A. Berthon, Frequency, thermal and voltage supercapacitor characterization and modeling. J. Power Sources 165(2), 928–934 (2007)

    Article  Google Scholar 

  16. J.K. Maherchandani, C. Agarwal, M. Sahi, Estimation of solar cell model parameter by hybrid genetic algorithm using Matlab. Int. J. Adv. Res. Comput. Eng. Technol. 1(6), 78 (2012)

    Google Scholar 

  17. H. Gualous, D. Bouquain, A. Berthon, J.M. Kauffmann, Experimental study of supercapacitor serial resistance and capacitance variations with temperature. J. Power Sources 123(1), 86–93 (2003)

    Article  Google Scholar 

  18. A. Sumper, F. Díaz-González, O. Gomis-Bellmunt, Energy Storage in Power Systems (Wiley, New Delhi, 2016)

    Google Scholar 

  19. K. Ishaque, Z. Salam, H. Taheri, Simple, fast and accurate two-diode model for photovoltaic modules. Sol. Energy Mater. Sol. Cells 95(2), 586–594 (2011)

    Article  Google Scholar 

  20. Z. Ahmad, S.N. Singh, Extraction of the internal parameters of solar photovoltaic module by developing Matlab/Simulink based model. Int. J. Appl. Eng. Res. 7, 1 (2012)

    Google Scholar 

  21. S. Lineykin, M. Averbukh, A. Kuperman, Issues in modeling amorphous silicon photovoltaic modules by single-diode equivalent circuit. IEEE Trans. Ind. Electron. 61(12), 6785–6793 (2014)

    Article  Google Scholar 

  22. B.C. Babu, S. Gurjar, A novel simplified two-diode model of photovoltaic (PV) module. IEEE J. Photovoltaics 4(4), 1156–1161 (2014)

    Article  Google Scholar 

  23. N.D. Kaushika, N.K. Gautam, Energy yield simulations of interconnected solar PV arrays. IEEE Trans. Energy Convers. 18(1), 127–134 (2003)

    Article  Google Scholar 

  24. W. Xiao, W.G. Dunford, A modified adaptive hill climbing MPPT method for photovoltaic power systems, in Power Electronics Specialists Conference, 2004. PESC 04. 2004 IEEE 35th Annual, 2004, vol. 3, pp. 1957–1963

    Google Scholar 

  25. G.-C. Hsieh, H.-I. Hsieh, C.-Y. Tsai, C.-H. Wang, Photovoltaic power-increment-aided incremental-conductance MPPT with two-phased tracking. IEEE Trans. Power Electron. 28(6), 2895–2911 (2013)

    Article  Google Scholar 

  26. S. Mekhilef, K.S. Tey, S. Mekhilef, S. Member, Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Ind. Electron. 61(10), 5384–5392 (2014)

    Article  Google Scholar 

  27. Q. Mei, M. Shan, L. Liu, J.M. Guerrero, A novel improved variable step-size incremental-resistance MPPT method for PV systems. IEEE Trans. Ind. Electron. 58(6), 2427–2434 (2011)

    Article  Google Scholar 

  28. T. Esram, J.W. Kimball, P.T. Krein, P.L. Chapman, P. Midya, Dynamic maximum power point tracking of photovoltaic arrays using ripple correlation control. IEEE Trans. Power Electron. 21(5), 1282–1290 (2006)

    Article  Google Scholar 

  29. A. Al Nabulsi, R. Dhaouadi, Efficiency optimization of a DSP-based standalone PV system using fuzzy logic and dual-MPPT control. IEEE Trans. Ind. Inf. 8(3), 573–584 (2012)

    Article  Google Scholar 

  30. E. Karatepe, T. Hiyama, Artificial neural network-polar coordinated fuzzy controller based maximum power point tracking control under partially shaded conditions. IET Renew. Power Gener. 3(2), 239–253 (2009)

    Article  Google Scholar 

  31. H. Renaudineau et al., A PSO-based global MPPT technique for distributed PV power generation. IEEE Trans. Ind. Electron. 62(2), 1047–1058 (2015)

    Article  Google Scholar 

  32. E. Bianconi et al., A fast current-based MPPT technique employing sliding mode control. IEEE Trans. Ind. Electron. 60(3), 1168–1178 (2013)

    Article  Google Scholar 

  33. F. Paz, M. Ordonez, Zero oscillation and irradiance slope tracking for photovoltaic MPPT. IEEE Trans. Ind. Electron. 61(11), 6138–6147 (2014)

    Article  Google Scholar 

  34. M. Killi, S. Samanta, Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Trans. Ind. Electron. 62(9), 5549–5559 (2015)

    Article  Google Scholar 

  35. R.M. Schupbach, J.C. Balda, Comparing DC-DC converters for power management in hybrid electric vehicles. IEMDC 2003 – IEEE Int. Electr. Mach. Drives Conf. 3(C), 1369–1374 (2003)

    Google Scholar 

  36. F.A. Himmelstoss, M.E. Ecker, Analyses of a bidirectional DC-DC half-bridge converter with zero voltage switching, in Signals, Circuits and Systems, 2005. ISSCS 2005. International Symposium on, 2005, vol. 2, pp. 449–452

    Google Scholar 

  37. J. Cao, A. Emadi, A new battery/ultracapacitor hybrid energy storage system for electric, hybrid, and plug-in hybrid electric vehicles. IEEE Trans. Power Electron. 27(1), 122–132 (2012)

    Article  Google Scholar 

  38. W.L. Jing, C.H. Lai, W.S.H. Wong, D.M.L. Wong, Smart hybrid energy storage for stand-alone PV microgrid: Optimization of battery lifespan through dynamic power allocation. Appl. Mech. Mater. 833, 19–26 (2016)

    Article  Google Scholar 

  39. I. Shchur, Y. Biletskyi, Interconnection and damping assignment passivity-based control of semi-active and active battery/supercapacitor hybrid energy storage systems for stand-alone photovoltaic installations, in Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET), 2018 14th International Conference on, 2018, pp. 324–329

    Google Scholar 

  40. L.W. Chong, Y.W. Wong, R.K. Rajkumar, D. Isa, Modelling and simulation of standalone PV systems with battery-supercapacitor hybrid energy storage system for a rural household. Energy Procedia 107(September 2016), 232–236 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Elbaset, A.A., Abdelwahab, S.A.M., Ibrahim, H.A., Eid, M.A.E. (2019). Literature Survey. In: Performance Analysis of Photovoltaic Systems with Energy Storage Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-20896-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20896-7_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20895-0

  • Online ISBN: 978-3-030-20896-7

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics