Skip to main content

Deep Object Co-segmentation

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

This work presents a deep object co-segmentation (DOCS) approach for segmenting common objects of the same class within a pair of images. This means that the method learns to ignore common, or uncommon, background stuff and focuses on common objects. If multiple object classes are presented in the image pair, they are jointly extracted as foreground. To address this task, we propose a CNN-based Siamese encoder-decoder architecture. The encoder extracts high-level semantic features of the foreground objects, a mutual correlation layer detects the common objects, and finally, the decoder generates the output foreground masks for each image. To train our model, we compile a large object co-segmentation dataset consisting of image pairs from the PASCAL dataset with common objects masks. We evaluate our approach on commonly used datasets for co-segmentation tasks and observe that our approach consistently outperforms competing methods, for both seen and unseen object classes.

W. Li and O. Hosseini Jafari—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Badrinarayanan, V., Kendall, A., Cipolla, R.: SegNet: a deep convolutional encoder-decoder architecture for scene segmentation. TPAMI 39, 2481–2495 (2017)

    Article  Google Scholar 

  2. Batra, D., Kowdle, A., Parikh, D., Luo, J., Chen, T.: iCoseg: interactive co-segmentation with intelligent scribble guidance. In: CVPR (2010)

    Google Scholar 

  3. Boykov, Y.Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in ND images. In: ICCV (2001)

    Google Scholar 

  4. Carreira, J., Sminchisescu, C.: Constrained parametric min-cuts for automatic object segmentation. In: CVPR (2010)

    Google Scholar 

  5. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. In: ICLR (2015)

    Google Scholar 

  6. Chen, X., Shrivastava, A., Gupta, A.: Enriching visual knowledge bases via object discovery and segmentation. In: CVPR (2014)

    Google Scholar 

  7. Collins, M.D., Xu, J., Grady, L., Singh, V.: Random walks based multi-image segmentation: quasiconvexity results and GPU-based solutions. In: CVPR (2012)

    Google Scholar 

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: CVPR (2009)

    Google Scholar 

  9. Dong, X., Shen, J., Shao, L., Yang, M.H.: Interactive cosegmentation using global and local energy optimization. IEEE Trans. Image Process. 24, 3966–3977 (2015)

    Article  MathSciNet  Google Scholar 

  10. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: ICCV (2015)

    Google Scholar 

  11. Faktor, A., Irani, M.: Co-segmentation by composition. In: ICCV (2013)

    Google Scholar 

  12. Fu, H., Xu, D., Lin, S., Liu, J.: Object-based RGBD image co-segmentation with mutex constraint. In: CVPR (2015)

    Google Scholar 

  13. Hariharan, B., Arbelaez, P., Bourdev, L., Maji, S., Malik, J.: Semantic contours from inverse detectors. In: ICCV (2011)

    Google Scholar 

  14. Hochbaum, D.S., Singh, V.: An efficient algorithm for co-segmentation. In: ICCV (2009)

    Google Scholar 

  15. Jain, S.D., Xiong, B., Grauman, K.: Pixel objectness. arXiv:1701.05349 (2017)

  16. Jerripothula, K.R., Cai, J., Meng, F., Yuan, J.: Automatic image co-segmentation using geometric mean saliency. In: ICIP (2014)

    Google Scholar 

  17. Jerripothula, K.R., Cai, J., Yuan, J.: Image co-segmentation via saliency co-fusion. IEEE Trans. Multimedia 18, 1896–1909 (2016)

    Article  Google Scholar 

  18. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACM Multimedia (2014)

    Google Scholar 

  19. Joulin, A., Bach, F., Ponce, J.: Discriminative clustering for image co-segmentation. In: CVPR (2010)

    Google Scholar 

  20. Kingma, D., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  21. Kowdle, A., Batra, D., Chen, W.-C., Chen, T.: iModel: interactive co-segmentation for object of interest 3D modeling. In: Kutulakos, K.N. (ed.) ECCV 2010. LNCS, vol. 6554, pp. 211–224. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35740-4_17

    Chapter  Google Scholar 

  22. Lee, C., Jang, W.D., Sim, J.Y., Kim, C.S.: Multiple random walkers and their application to image cosegmentation. In: CVPR (2015)

    Google Scholar 

  23. Li, G., Yu, Y.: Deep contrast learning for salient object detection. In: CVPR (2016)

    Google Scholar 

  24. Lin, G., Milan, A., Shen, C., Reid, I.: RefineNet: multi-path refinement networks for high-resolution semantic segmentation. In: CVPR (2017)

    Google Scholar 

  25. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  26. Mukherjee, L., Singh, V., Dyer, C.R.: Half-integrality based algorithms for cosegmentation of images. In: CVPR (2009)

    Google Scholar 

  27. Noh, H., Hong, S., Han, B.: Learning deconvolution network for semantic segmentation. In: ICCV (2015)

    Google Scholar 

  28. Quan, R., Han, J., Zhang, D., Nie, F.: Object co-segmentation via graph optimized-flexible manifold ranking. In: CVPR (2016)

    Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Rother, C., Minka, T., Blake, A., Kolmogorov, V.: Cosegmentation of image pairs by histogram matching-incorporating a global constraint into MRFs. In: CVPR (2006)

    Google Scholar 

  31. Rubinstein, M., Joulin, A., Kopf, J., Liu, C.: Unsupervised joint object discovery and segmentation in internet images. In: CVPR (2013)

    Google Scholar 

  32. Rubio, J.C., Serrat, J., López, A., Paragios, N.: Unsupervised co-segmentation through region matching. In: CVPR (2012)

    Google Scholar 

  33. Shen, T., Lin, G., Liu, L., Shen, C., Reid, I.: Weakly supervised semantic segmentation based on co-segmentation. In: BMVC (2017)

    Google Scholar 

  34. Shotton, J., Winn, J., Rother, C., Criminisi, A.: TextonBoost: joint appearance, shape and context modeling for multi-class object recognition and segmentation. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 1–15. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_1

    Chapter  Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  36. Taniai, T., Sinha, S.N., Sato, Y.: Joint recovery of dense correspondence and cosegmentation in two images. In: CVPR (2016)

    Google Scholar 

  37. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104, 154–171 (2013)

    Article  Google Scholar 

  38. Vicente, S., Kolmogorov, V., Rother, C.: Cosegmentation revisited: models and optimization. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 465–479. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15552-9_34

    Chapter  Google Scholar 

  39. Vicente, S., Rother, C., Kolmogorov, V.: Object cosegmentation. In: CVPR (2011)

    Google Scholar 

  40. Wang, F., Huang, Q., Guibas, L.J.: Image co-segmentation via consistent functional maps. In: ICCV (2013)

    Google Scholar 

  41. Wang, L., Wang, L., Lu, H., Zhang, P., Ruan, X.: Saliency detection with recurrent fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 825–841. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_50

    Chapter  Google Scholar 

  42. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.: Deep GrabCut for object selection. In: BMVC (2017)

    Google Scholar 

  43. Xu, N., Price, B., Cohen, S., Yang, J., Huang, T.S.: Deep interactive object selection. In: CVPR (2016)

    Google Scholar 

  44. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: ICLR (2016)

    Google Scholar 

  45. Yuan, Z., Lu, T., Wu, Y.: Deep-dense conditional random fields for object co-segmentation. In: IJCAI (2017)

    Google Scholar 

  46. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  47. Zheng, S., et al.: Conditional random fields as recurrent neural networks. In: ICCV (2015)

    Google Scholar 

Download references

Acknowledgements

This work is funded by the DFG grant “COVMAP: Intelligente Karten mittels gemeinsamer GPS- und Videodatenanalyse” (RO 4804/2-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weihao Li or Omid Hosseini Jafari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, W., Hosseini Jafari, O., Rother, C. (2019). Deep Object Co-segmentation. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics