Skip to main content

Pose Estimation of a Single Circle Using Default Intrinsic Calibration

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

  • 3504 Accesses

Abstract

Circular markers are planar markers which offer great performances for detection and pose estimation. For an uncalibrated camera with rectangular pixels, the images of at least two coplanar circles in one view are generally required to recover the circle poses. Unfortunately, detecting more than one ellipse in the image is tricky and time-consuming, especially regarding concentric circles. On the other hand, when the camera is calibrated, the pose of one circle can be computed with its image alone but the solution is twofold and cannot be a priori disambiguated. Our contribution is to put beyond this limit (i) by dealing with the case of a calibrated camera with “default parameters” (e.g., using \(2\times 80\%\) of the image diagonal as focal length) that sees only one circle and (ii) by defining a theoretical framework where the pose ambiguity can be investigated. Regarding (i), we empirically show the surprising observation that default calibration leads to a circle pose estimation with accurate reprojection results which is quite satisfactory for augmented reality. As for (ii), we propose a new geometric formulation that enables to show how to detect geometric configurations in which the ambiguity can be removed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SO(3) refers to the 3D rotation group.

  2. 2.

    \(\text {Sym}_3\) refers to the space of order-3 real symmetric matrices.

  3. 3.

    Virtual conics have positive definite matrices, so, no real points on them.

  4. 4.

    The signature of a conic is \(\sigma (\mathsf {C})=(\max (p,n),\min (p,n))\), where p and n count the positive and negative eigenvalues of its (real) matrix \(\mathsf {C}\). It is left unchanged by projective transformations.

  5. 5.

    The 3D plane through the camera centre and parallel to the image plane.

  6. 6.

    https://fr.maplesoft.com/.

  7. 7.

    https://opencv.org/.

References

  1. Bergamasco, F., Albarelli, A., Rodolà, E., Torsello, A.: RUNE-Tag: a high accuracy fiducial marker with strong occlusion resilience. In: CVPR (2011)

    Google Scholar 

  2. Calvet, L., Gurdjos, P., Griwodz, C., Gasparini, S.: Detection and accurate localization of circular fiducials under highly challenging conditions. In: CVPR (2016)

    Google Scholar 

  3. Fiala, M.: Artag, a fiducial marker system using digital techniques. In: CVPR (2005)

    Google Scholar 

  4. Fiala, M.: Designing highly reliable fiducial markers. PAMI 32(7), 1317–1324 (2010)

    Article  Google Scholar 

  5. Gurdjos, P., Sturm, P., Wu, Y.: Euclidean structure from N\( \ge \) 2 parallel circles: theory and algorithms. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 238–252. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_19

    Chapter  Google Scholar 

  6. Hartley, R., Zisserman, A.: Multiple View Geometry. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  7. Huang, H., Zhang, H., Cheung, Y.M.: The common self-polar triangle of concentric circles and its application to camera calibration. In: CVPR (2015)

    Google Scholar 

  8. Kim, J.S., Gurdjos, P., Kweon, I.S.: Geometric and algebraic constraints of projected concentric circles and their applications to camera calibration. PAMI 27(4), 637–642 (2005)

    Article  Google Scholar 

  9. Kopp, J.: Efficient numerical diagonalization of hermitian 3x3 matrices. Int. J. Modern Phys. C 19(03), 523–548 (2008)

    Article  MathSciNet  Google Scholar 

  10. Köser, K., Koch, R.: Differential spatial resection - pose estimation using a single local image feature. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 312–325. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88693-8_23

    Chapter  Google Scholar 

  11. Pagani, A., Koehle, J., Stricker, D.: Circular Markers for camera pose estimation. In: Image Analysis for Multimedia Interactive Services (2011)

    Google Scholar 

  12. Pollefeys, M., Koch, R., Van Gool, L.: Self-calibration and metric reconstruction inspite of varying and unknown intrinsic camera parameters. IJCV 32(1), 7–25 (1999)

    Article  Google Scholar 

  13. Rekimoto, J.: Matrix: a realtime object identification and registration method for augmented reality. In: Asian Pacific Computer Human Interaction (1998)

    Google Scholar 

  14. Sturm, P.: Algorithms for plane-based pose estimation. In: CVPR (2000)

    Google Scholar 

  15. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2010). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  16. Szpak, Z.L., Chojnacki, W., van den Hengel, A.: Guaranteed ellipse fitting with a confidence region and an uncertainty measure for centre, axes, and orientation. JMIV 52(2), 173–199 (2015)

    Article  MathSciNet  Google Scholar 

  17. Wagner, D., Schmalstieg, D.: Artoolkitplus for pose tracking on mobile devices. In: ISMAR (2007). https://doi.org/10.1.1.157.1879

  18. Chen, Q., Wu, H., Wada, T.: Camera calibration with two arbitrary coplanar circles. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3023, pp. 521–532. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24672-5_41

    Chapter  Google Scholar 

  19. Wu, H., Chen, Q., Wada, T.: Conic-based algorithm for visual line estimation from one image. In: Automatic Face and Gesture Recognition (2004)

    Google Scholar 

  20. Zheng, Y., Ma, W., Liu, Y.: Another way of looking at monocular circle pose estimation. In: ICIP (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damien Mariyanayagam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mariyanayagam, D., Gurdjos, P., Chambon, S., Brunet, F., Charvillat, V. (2019). Pose Estimation of a Single Circle Using Default Intrinsic Calibration. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics