Skip to main content

AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11362))

Included in the following conference series:

Abstract

We propose a novel approach for class-agnostic object proposal generation, which is efficient and especially well-suited to detect small objects. Efficiency is achieved by scale-specific objectness attention maps which focus the processing on promising parts of the image and reduce the amount of sampled windows strongly. This leads to a system, which is \(33\%\) faster than the state-of-the-art and clearly outperforming state-of-the-art in terms of average recall. Secondly, we add a module for detecting small objects, which are often missed by recent models. We show that this module improves the average recall for small objects by about \(53\%\). Our implementation is available at: https://www.inf.uni-hamburg.de/en/inst/ab/cv/people/wilms/attentionmask.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alexe, B., Deselaers, T., Ferrari, V.: Measuring the objectness of image windows. TPAMI 34(11), 2189–2202 (2012)

    Article  Google Scholar 

  2. Chen, L.C., Hermans, A., Papandreou, G., Schroff, F., Wang, P., Adam, H.: MaskLab: instance segmentation by refining object detection with semantic and direction features. In: CVPR, pp. 4013–4022. IEEE (2018)

    Google Scholar 

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2017)

    Article  Google Scholar 

  4. Chen, L.C., Yang, Y., Wang, J., Xu, W., Yuille, A.L.: Attention to scale: Scale-aware semantic image segmentation. In: CVPR, pp. 3640–3649. IEEE (2016)

    Google Scholar 

  5. Chen, L., et al.: SCA-CNN: spatial and channel-wise attention in convolutional networks for image captioning. In: CVPR, pp. 6298–6306. IEEE (2017)

    Google Scholar 

  6. Cheng, M.M., Zhang, Z., Lin, W.Y., Torr, P.H.S.: BING: binarized normed gradients for objectness estimation at 300fps. In: CVPR, pp. 3286–3293. IEEE (2014)

    Google Scholar 

  7. Dai, J., He, K., Li, Y., Ren, S., Sun, J.: Instance-sensitive fully convolutional networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 534–549. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_32

    Chapter  Google Scholar 

  8. Frintrop, S., Werner, T., Martín García, G.: Traditional saliency reloaded: a good old model in new shape. In: CVPR, pp. 82–90. IEEE (2015)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: ICCV, pp. 1440–1448. IEEE (2015)

    Google Scholar 

  10. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580–587. IEEE (2014)

    Google Scholar 

  11. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: NIPS, pp. 545–552. MIT Press (2007)

    Google Scholar 

  12. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2980–2988. IEEE (2017)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346–361. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10578-9_23

    Chapter  Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778. IEEE (2016)

    Google Scholar 

  15. Hong, S., Roh, B., Kim, K.H., Cheon, Y., Park, M.: PVANet: lightweight deep neural networks for real-time object detection. arXiv preprint arXiv:1611.08588 (2016)

  16. Horbert, E., Martín García, G., Frintrop, S., Leibe, B.: Sequence-level object candidates based on saliency for generic object recognition on mobile systems. In: ICRA, pp. 127–134. IEEE (2015)

    Google Scholar 

  17. Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? TPAMI 38(4), 814–830 (2015)

    Article  Google Scholar 

  18. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.: Deeply supervised salient object detection with short connections. In: CVPR, pp. 5300–5309. IEEE (2017)

    Google Scholar 

  19. Hu, H., Lan, S., Jiang, Y., Cao, Z., Sha, F.: FastMask: segment multi-scale object candidates in one shot. In: CVPR, pp. 2280–2288. IEEE (2017)

    Google Scholar 

  20. Huang, X., Shen, C., Boix, X., Zhao, Q.: SALICON: reducing the semantic gap in saliency prediction by adapting deep neural networks. In: ICCV, pp. 262–270. IEEE (2015)

    Google Scholar 

  21. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. TPAMI 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  22. Klein, D.A., Frintrop, S.: Center-surround divergence of feature statistics for salient object detection. In: ICCV, pp. 2214–2219. IEEE (2011)

    Google Scholar 

  23. Kong, T., Sun, F., Yao, A., Liu, H., Lu, M., Chen, Y.: RON: reverse connection with objectness prior networks for object detection. In: CVPR, pp. 5244–5252. IEEE (2017)

    Google Scholar 

  24. Li, H., Liu, Y., Ouyang, W., Wang, X.: Zoom out-and-in network with recursive training for object proposal. arXiv preprint arXiv:1702.05711 (2017)

  25. Li, Y., Qi, H., Dai, J., Ji, X., Wei, Y.: Fully convolutional instance-aware semantic segmentation. In: CVPR, pp. 4438–4446. IEEE (2017)

    Google Scholar 

  26. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  27. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440. IEEE (2015)

    Google Scholar 

  28. Pashler, H.: The Psychology of Attention. MIT Press, Cambridge (1997)

    Book  Google Scholar 

  29. Pinheiro, P.O., Collobert, R., Dollár, P.: Learning to segment object candidates. In: NIPS, pp. 1990–1998. MIT Press (2015)

    Google Scholar 

  30. Pinheiro, P.O., Lin, T.-Y., Collobert, R., Dollár, P.: Learning to refine object segments. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 75–91. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_5

    Chapter  Google Scholar 

  31. Pont-Tuset, J., Arbelaez, P., Barron, J.T., Marques, F., Malik, J.: Multiscale combinatorial grouping for image segmentation and object proposal generation. TPAMI 39(1), 128–140 (2017)

    Article  Google Scholar 

  32. Qiao, S., Shen, W., Qiu, W., Liu, C., Yuille, A.: ScaleNet: guiding object proposal generation in supermarkets and beyond. In: ICCV, pp. 1809–1818. IEEE (2017)

    Google Scholar 

  33. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: CVPR, pp. 779–788. IEEE (2016)

    Google Scholar 

  34. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: NIPS, pp. 91–99. MIT Press (2015)

    Google Scholar 

  35. Treisman, A.M., Gelade, G.: Cogn. Psychol. 12 (1980)

    Google Scholar 

  36. Tsotsos, J.K.: An inhibitory beam for attentional selection. In: Harris, L.R., Jenkin, M. (eds.) Spatial Vision in Humans and Robots. Cambridge University Press (1993)

    Google Scholar 

  37. Uijlings, J.R., Van De Sande, K.E., Gevers, T., Smeulders, A.W.: Selective search for object recognition. IJCV 104(2), 154–171 (2013)

    Article  Google Scholar 

  38. Werner, T., Martín-García, G., Frintrop, S.: Saliency-guided object candidates based on gestalt principles. In: Nalpantidis, L., Krüger, V., Eklundh, J.-O., Gasteratos, A. (eds.) ICVS 2015. LNCS, vol. 9163, pp. 34–44. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20904-3_4

    Chapter  Google Scholar 

  39. Wolfe, J.M., Cave, K., Franzel, S.: Guided search: an alternative to the feature integration model for visual search. J. Exp. Psychol. Hum. Percept. Perform. 15, 97–136 (1989)

    Article  Google Scholar 

  40. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: ICML, pp. 2048–2057. PMLR (2015)

    Google Scholar 

  41. Yang, Z., He, X., Gao, J., Deng, L., Smola, A.: Stacked attention networks for image question answering. In: CVPR, pp. 21–29. IEEE (2016)

    Google Scholar 

  42. You, Q., Jin, H., Wang, Z., Fang, C., Luo, J.: Image captioning with semantic attention. In: CVPR, pp. 4651–4659. IEEE (2016)

    Google Scholar 

  43. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  44. Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391–405. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_26

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Wilms .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 33297 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wilms, C., Frintrop, S. (2019). AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11362. Springer, Cham. https://doi.org/10.1007/978-3-030-20890-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20890-5_43

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20889-9

  • Online ISBN: 978-3-030-20890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics