Skip to main content

Geometric Image Synthesis

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

The task of generating natural images from 3D scenes has been a long standing goal in computer graphics. On the other hand, recent developments in deep neural networks allow for trainable models that can produce natural-looking images with little or no knowledge about the scene structure. While the generated images often consist of realistic looking local patterns, the overall structure of the generated images is often inconsistent. In this work we propose a trainable, geometry-aware image generation method that leverages various types of scene information, including geometry and segmentation, to create realistic looking natural images that match the desired scene structure. Our geometrically-consistent image synthesis method is a deep neural network, called Geometry to Image Synthesis (GIS) framework, which retains the advantages of a trainable method, e.g., differentiability and adaptiveness, but, at the same time, makes a step towards the generalizability, control and quality output of modern graphics rendering engines. We utilize the GIS framework to insert vehicles in outdoor driving scenes, as well as to generate novel views of objects from the Linemod dataset. We qualitatively show that our network is able to generalize beyond the training set to novel scene geometries, object shapes and segmentations. Furthermore, we quantitatively show that the GIS framework can be used to synthesize large amounts of training data which proves beneficial for training instance segmentation models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://youtu.be/W2tFCz9xJoU.

References

  1. Abu Alhaija, H., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets deep learning for car instance segmentation in urban scenes. In: BMVC (2017)

    Google Scholar 

  2. Abu Alhaija, H., Mustikovela, S.K., Mescheder, L., Geiger, A., Rother, C.: Augmented reality meets computer vision: efficient data generation for urban driving scenes. IJCV 126, 961–972 (2018)

    Article  Google Scholar 

  3. Chen, Q., Koltun, V.: Photographic image synthesis with cascaded refinement networks. In: ICCV (2017)

    Google Scholar 

  4. Chen, W., et al.: Synthesizing training images for boosting human 3D pose estimation. In: 3DV (2016)

    Google Scholar 

  5. Cheung, E., Wong, T.K., Bera, A., Manocha, D.: STD-PD: generating synthetic training data for pedestrian detection in unannotated videos. arXiv:1707.09100 (2017)

  6. Dai, J., He, K., Sun, J.: Instance-aware semantic segmentation via multi-task network cascades. In: CVPR (2016)

    Google Scholar 

  7. Denton, E.L., Chintala, S., Szlam, A., Fergus, R.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: NIPS (2015)

    Google Scholar 

  8. Dosovitskiy, A., Springenberg, J.T., Tatarchenko, M., Brox, T.: Learning to generate chairs, tables and cars with convolutional networks. PAMI 39(4), 692–705 (2017)

    Google Scholar 

  9. Dwibedi, D., Misra, I., Hebert, M.: Cut, paste and learn: surprisingly easy synthesis for instance detection. In: ICCV (2017)

    Google Scholar 

  10. Gaidon, A., Wang, Q., Cabon, Y., Vig, E.: Virtual worlds as proxy for multi-object tracking analysis. In: CVPR (2016)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv:1508.06576 (2015)

  12. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The KITTI vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  13. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  14. Guzmán-Rivera, A., Batra, D., Kohli, P.: Multiple choice learning: learning to produce multiple structured outputs. In: NIPS (2012)

    Google Scholar 

  15. Hattori, H., Boddeti, V.N., Kitani, K.M., Kanade, T.: Learning scene-specific pedestrian detectors without real data. In: CVPR (2015)

    Google Scholar 

  16. He, K., Gkioxari, G., Dollr, P., Girshick, R.: Mask R-CNN. In: ICCV, pp. 2980–2988, October 2017. https://doi.org/10.1109/ICCV.2017.322

  17. Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42

    Chapter  Google Scholar 

  18. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  19. Johnson-Roberson, M., Barto, C., Mehta, R., Sridhar, S.N., Rosaen, K., Vasudevan, R.: Driving in the matrix: can virtual worlds replace human-generated annotations for real world tasks? In: ICRA (2017)

    Google Scholar 

  20. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR (2016)

    Google Scholar 

  21. Mayer, N., et al.: What makes good synthetic training data for learning disparity and optical flow estimation? arXiv:1801.06397 (2018)

  22. McCormac, J., Handa, A., Leutenegger, S., Davison, A.J.: SceneNet RGB-D: can 5M synthetic images beat generic ImageNet pre-training on indoor segmentation? In: ICCV (2017)

    Google Scholar 

  23. Michel, F., et al.: Global hypothesis generation for 6D object pose estimation. CoRR abs/1612.02287 (2016). http://arxiv.org/abs/1612.02287

  24. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv:1511.06434 (2015)

  25. Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: ICCV (2017)

    Google Scholar 

  26. Richter, S.R., Vineet, V., Roth, S., Koltun, V.: Playing for data: ground truth from computer games. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 102–118. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_7

    Chapter  Google Scholar 

  27. Riegler, G., Ulusoy, A.O., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: CVPR (2017)

    Google Scholar 

  28. Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: CVPR (2016)

    Google Scholar 

  29. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. In: NIPS, pp. 2018–2028 (2017)

    Google Scholar 

  30. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

  31. de Souza, C.R., Gaidon, A., Cabon, Y., Peña, A.M.L.: Procedural generation of videos to train deep action recognition networks. arXiv:1612.00881 (2016)

  32. Tremblay, J., et al.: Training deep networks with synthetic data: bridging the reality gap by domain randomization. arXiv preprint arXiv:1804.06516 (2018)

  33. Tsirikoglou, A., Kronander, J., Wrenninge, M., Unger, J.: Procedural modeling and physically based rendering for synthetic data generation in automotive applications. arXiv:1710.06270 (2017)

  34. Varol, G., et al.: Learning from synthetic humans. In: CVPR (2017)

    Google Scholar 

  35. Veeravasarapu, V.S.R., Rothkopf, C.A., Ramesh, V.: Model-driven simulations for deep convolutional neural networks. arXiv:1605.09582 (2016)

  36. Wang, T., Liu, M., Zhu, J., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. arXiv:1711.11585 (2017)

  37. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: CVPR (2018)

    Google Scholar 

  38. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20

    Chapter  Google Scholar 

  39. Xu, W., Li, Y., Lu, C.: Generating instance segmentation annotation by geometry-guided GAN. arXiv:1801.08839 (2018)

  40. Yang, Z., Liu, H., Cai, D.: On the diversity of realistic image synthesis. arXiv:1712.07329 (2017)

  41. Zhang, Y., et al.: Physically-based rendering for indoor scene understanding using convolutional neural networks. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgments

This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 programme (grant No. 647769) and by the Heidelberg Collaboratory for Image Processing (HCI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Abu Alhaija .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abu Alhaija, H., Mustikovela, S.K., Geiger, A., Rother, C. (2019). Geometric Image Synthesis. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics