Skip to main content

Blur Detection via Phase Spectrum

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

  • 1885 Accesses

Abstract

The effectiveness of blur features is very important in blur detection from a single image and the most existing blur features are sensitive to the strong edges in the blurred image region which degrades the detection methods. We analyze the information carried by the reconstruction of an image from the phase spectrum alone (RIPS) and the influences of blurring on RIPS. We find that a clear image region has more intensity changes than a blurred one because the former has more high frequency components. And the local maxima of RIPS are at where these image components occur, which make the RIPS of the clear image regions are obviously bigger than that of the blurred ones. Based on this finding, we proposed a simple blur feature, called Phase Map (PM), generated by thresholding RIPS adaptively. And our blur detection method propagates PM to the final blur map only by filtering PM using the relative total variation (RTV) filter. Our proposed method is evaluated on challenging blur image datasets. The evaluation demonstrates that PM feature is effective for different blur types and our detection method performs better than the state-of-the-art algorithms quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bae, S., Durand, F.: Defocus magnification. Comput. Graph. Forum 26(3), 571–579 (2007)

    Article  Google Scholar 

  2. Castleman, K.R.: Digital Image Process. Prentice Hall Press, New Jersey (1996)

    Google Scholar 

  3. Chakrabarti, A., Zickler, T., Freeman, W.T.: Analyzing spatially-varying blur. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2512–2519. IEEE Press (2010)

    Google Scholar 

  4. Chou, Y.C., Fang, C.Y., Su, P.C.: Content-based cropping using visual saliency and blur detection. In: 10th International Conference on Ubi-Media Computing and Workshops (Ubi-Media), pp. 1–6. IEEE Press (2017)

    Google Scholar 

  5. Elder, J.H., Zucker, S.W.: Local scale control for edge detection and blur estimation. IEEE Trans. Pattern Anal. Mach. Intell. 20(7), 699–716 (1998)

    Article  Google Scholar 

  6. Favaro, P., Soatto, S.: A geometric approach to shape from defocus. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 406–417 (2005)

    Article  Google Scholar 

  7. Fergus, R., Singh, B., Hertzmann, A., Roweis, S.T., Freeman, W.T.: Removing camera shake from a single photograph. ACM Trans. Graph. 25(3), 787–794 (2006)

    Article  Google Scholar 

  8. Ferzli, R., Karam, L.J.: A no-reference objective image sharpness metric based on the notion of just noticeable blur (JNB). IEEE Trans. Image Process. 18(4), 717–728 (2009)

    Article  MathSciNet  Google Scholar 

  9. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Pearson, London (2012)

    Google Scholar 

  10. Golestaneh, S.A., Karam, L.J.: Spatially-varying blur detection based on multiscale fused and sorted transform coefficients of gradient magnitudes. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 596–605. IEEE Press (2017)

    Google Scholar 

  11. Ha, H., Im, S., Park, J., Jeon, H.G., Kweon, I.S.: High-quality depth from uncalibrated small motion clip. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5413–5421. IEEE Press (2016)

    Google Scholar 

  12. Levin, A.: Blind motion deblurring using image statistics. In: 2006 Advances in Neural Information Processing Systems (NIPS), vol. 19, pp. 841–848. MIT Press (2007)

    Google Scholar 

  13. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)

    Article  Google Scholar 

  14. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)

    Article  Google Scholar 

  15. Li, S., Kang, X., Hu, J., Yang, B.: Image matting for fusion of multi-focus images in dynamic scenes. Inf. Fusion 14(2), 147–162 (2013)

    Article  Google Scholar 

  16. Liu, R., Li, Z., Jia, J.: Image partial blur detection and classification. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8. IEEE Press (2008)

    Google Scholar 

  17. Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 20(9), 2678–2683 (2011)

    Article  MathSciNet  Google Scholar 

  18. Pan, J., Sun, D., Pfister, H., Yang, M.H.: Blind image deblurring using dark channel prior. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1628–1636. IEEE Press (2016)

    Google Scholar 

  19. Shi, J., Xu, L., Jia, J.: Discriminative blur detection features. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2965–2972. IEEE Press (2014)

    Google Scholar 

  20. Shi, J., Xu, L., Jia, J.: Just noticeable defocus blur detection and estimation. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 657–665. IEEE Press (2015)

    Google Scholar 

  21. Su, B., Lu, S., Tan, C.L.: Blurred image region detection and classification. In: 19th International Conference on Multimedia, pp. 1397–1400. ACM Press (2011)

    Google Scholar 

  22. Tang, C., Hou, C., Song, Z.: Defocus map estimation from a single image via spectrum contrast. Opt. Lett. 38(10), 1706–1708 (2013)

    Article  Google Scholar 

  23. Tang, C., Wu, J., Hou, Y., Wang, P., Li, W.: A spectral and spatial approach of coarse-to-fine blurred image region detection. IEEE Sig. Process. Lett. 23(11), 1652–1656 (2016)

    Article  Google Scholar 

  24. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  25. Xu, L., Yan, Q., Xia, Y., Jia, J.: Structure extraction from texture via relative total variation. ACM Trans. Graph. 31(6), 139 (2012)

    Google Scholar 

  26. Yi, X., Eramian, M.: LBP-based segmentation of defocus blur. IEEE Trans. Image Process. 25(4), 1626–1638 (2016)

    Article  MathSciNet  Google Scholar 

  27. Yu, F., Gallup, D.: 3D reconstruction from accidental motion. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3986–3993. IEEE Press (2014)

    Google Scholar 

  28. Zhu, X., Cohen, S., Schiller, S., Milanfar, P.: Estimating spatially varying defocus blur from a single image. IEEE Trans. Image Process. 22(12), 4879–4891 (2013)

    Article  MathSciNet  Google Scholar 

  29. Zhuo, S., Sim, T.: Defocus map estimation from a single image. Pattern Recogn. 44(9), 1852–1858 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renyan Zhang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 176 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, R. (2019). Blur Detection via Phase Spectrum. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics