Skip to main content

ReCoNet: Real-Time Coherent Video Style Transfer Network

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

Image style transfer models based on convolutional neural networks usually suffer from high temporal inconsistency when applied to videos. Some video style transfer models have been proposed to improve temporal consistency, yet they fail to guarantee fast processing speed, nice perceptual style quality and high temporal consistency at the same time. In this paper, we propose a novel real-time video style transfer model, ReCoNet, which can generate temporally coherent style transfer videos while maintaining favorable perceptual styles. A novel luminance warping constraint is added to the temporal loss at the output level to capture luminance changes between consecutive frames and increase stylization stability under illumination effects. We also propose a novel feature-map-level temporal loss to further enhance temporal consistency on traceable objects. Experimental results indicate that our model exhibits outstanding performance both qualitatively and quantitatively.

C. Gao, D. Gu and F. Zhang—Joint first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, A.G., Berg, C.P., Mossing, D.P., Olshausen, B.A.: DeepMovie: using optical flow and deep neural networks to stylize movies. arXiv preprint arXiv:1605.08153 (2016)

  2. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  3. Champandard, A.J.: Semantic style transfer and turning two-bit doodles into fine artworks. arXiv preprint arXiv:1603.01768 (2016)

  4. Chen, D., Liao, J., Yuan, L., Yu, N., Hua, G.: Coherent online video style transfer. In: Proceedings of the IEEE International Conference on Computer Vision, October 2017

    Google Scholar 

  5. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: StyleBank: an explicit representation for neural image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1897–1906 (2017)

    Google Scholar 

  6. Chen, D., Yuan, L., Liao, J., Yu, N., Hua, G.: Stereoscopic neural styletransfer. In: CVPR (2018)

    Google Scholar 

  7. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2758–2766 (2015)

    Google Scholar 

  10. Dumoulin, V., et al.: A learned representation for artistic style. arXiv preprint arXiv:1610.07629 (2016)

  11. Gatys, L.A., Ecker, A.S., Bethge, M.: A neural algorithm of artistic style. arXiv preprint arXiv:1508.06576 (2015)

  12. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423. IEEE (2016)

    Google Scholar 

  13. Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann, A., Shechtman, E.: Controlling perceptual factors in neural style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  14. Gupta, A., Johnson, J., Alahi, A., Fei-Fei, L.: Characterizing and improving stability in neural style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4067–4076 (2017)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Horn, B.K.: Determining lightness from an image. Comput. Graph. Image Process. 3(4), 277–299 (1974)

    Article  Google Scholar 

  17. Huang, H., et al.: Real-time neural style transfer for videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  18. Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., Brox, T.: FlowNet 2.0: evolution of optical flow estimation with deep networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2 (2017)

    Google Scholar 

  19. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)

    Google Scholar 

  21. Liao, J., Yao, Y., Yuan, L., Hua, G., Kang, S.B.: Visual attribute transfer through deep image analogy. arXiv preprint arXiv:1705.01088 (2017)

  22. Luan, F., Paris, S., Shechtman, E., Bala, K.: Deep photo style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6997–7005. IEEE (2017)

    Google Scholar 

  23. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4040–4048 (2016)

    Google Scholar 

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

    Google Scholar 

  25. Odena, A., Dumoulin, V., Olah, C.: Deconvolution and checkerboard artifacts. Distill 1, e3 (2016). https://doi.org/10.23915/distill.00003. http://distill.pub/2016/deconv-checkerboard

    Article  Google Scholar 

  26. Paszke, A., et al.: PyTorch: tensors and dynamic neural networks in python with strong GPU acceleration (2017)

    Google Scholar 

  27. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos. In: Rosenhahn, B., Andres, B. (eds.) GCPR 2016. LNCS, vol. 9796, pp. 26–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45886-1_3

    Chapter  Google Scholar 

  28. Ruder, M., Dosovitskiy, A., Brox, T.: Artistic style transfer for videos and spherical images. Int. J. Comput. Vis. 126(11), 1199–1219 (2018)

    Article  MathSciNet  Google Scholar 

  29. Selim, A., Elgharib, M., Doyle, L.: Painting style transfer for head portraits using convolutional neural networks. ACM Trans. Graph. (ToG) 35(4), 129 (2016)

    Article  Google Scholar 

  30. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  31. Sundaram, N., Brox, T., Keutzer, K.: Dense point trajectories by GPU-accelerated large displacement optical flow. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6311, pp. 438–451. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15549-9_32

    Chapter  Google Scholar 

  32. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.S.: Texture networks: feed-forward synthesis of textures and stylized images. In: International Conference on Machine Learning, pp. 1349–1357 (2016)

    Google Scholar 

  33. Ulyanov, D., Vedaldi, A., Lempitsky, V.S.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  34. Videvo: Videvo free footage (2018). https://www.videvo.net/. Accessed 26 Feb 2018

  35. Weinzaepfel, P., Revaud, J., Harchaoui, Z., Schmid, C.: DeepFlow: large displacement optical flow with deep matching. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 1385–1392. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, C., Gu, D., Zhang, F., Yu, Y. (2019). ReCoNet: Real-Time Coherent Video Style Transfer Network. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics