Skip to main content

Rethinking Planar Homography Estimation Using Perspective Fields

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Abstract

Planar homography estimation refers to the problem of computing a bijective linear mapping of pixels between two images. While this problem has been studied with convolutional neural networks (CNNs), existing methods simply regress the location of the four corners using a dense layer preceded by a fully-connected layer. This vector representation damages the spatial structure of the corners since they have a clear spatial order. Moreover, four points are the minimum required to compute the homography, and so such an approach is susceptible to perturbation. In this paper, we propose a conceptually simple, reliable, and general framework for homography estimation. In contrast to previous works, we formulate this problem as a perspective field (PF), which models the essence of the homography - pixel-to-pixel bijection. The PF is naturally learned by the proposed fully convolutional residual network, PFNet, to keep the spatial order of each pixel. Moreover, since every pixels’ displacement can be obtained from the PF, it enables robust homography estimation by utilizing dense correspondences. Our experiments demonstrate the proposed method outperforms traditional correspondence-based approaches and state-of-the-art CNN approaches in terms of accuracy while also having a smaller network size. In addition, the new parameterization of this task is general and can be implemented by any fully convolutional network (FCN) architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    ImgAug toolbox: https://github.com/aleju/imgaug.

References

  1. Abadi, M., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 404–417. Springer, Heidelberg (2006). https://doi.org/10.1007/11744023_32

    Chapter  Google Scholar 

  3. Chollet, F., et al.: Keras (2015)

    Google Scholar 

  4. Chum, O., Matas, J.: Planar affine rectification from change of scale. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6495, pp. 347–360. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19282-1_28

    Chapter  Google Scholar 

  5. DeTone, D., Malisiewicz, T., Rabinovich, A.: Deep image homography estimation. arXiv preprint arXiv:1606.03798 (2016)

  6. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of International Conference on Artificial Intelligence and Statistics, pp. 249–256 (2010)

    Google Scholar 

  7. Gong, M., Zhao, S., Jiao, L., Tian, D., Wang, S.: A novel coarse-to-fine scheme for automatic image registration based on sift and mutual information. IEEE Trans. Geosci. Remote Sens. 52(7), 4328–4338 (2014). https://doi.org/10.1109/TGRS.2013.2281391

    Article  Google Scholar 

  8. Ha, H., Perdoch, M., Alismail, H., Kweon, I.S., Sheikh, Y.: Deltille grids for geometric camera calibration. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 5344–5352 (2017)

    Google Scholar 

  9. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  10. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  11. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  12. Japkowicz, N., Nowruzi, F.E., Laganiere, R.: Homography estimation from image pairs with hierarchical convolutional networks. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 904–911, October 2017. https://doi.org/10.1109/ICCVW.2017.111

  13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  14. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: Proceedings of IEEE International Conference on 3D Vision, pp. 239–248. IEEE (2016)

    Google Scholar 

  15. Lin, T.Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  16. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  18. Ma, J., Zhou, H., Zhao, J., Gao, Y., Jiang, J., Tian, J.: Robust feature matching for remote sensing image registration via locally linear transforming. IEEE Trans. Geosci. Remote Sens. 53(12), 6469–6481 (2015). https://doi.org/10.1109/TGRS.2015.2441954

    Article  Google Scholar 

  19. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  20. Monasse, P., Morel, J.M., Tang, Z.: Three-step image rectification. In: Proceedings of British Machine Vision Conference, p. 89-1. BMVA Press (2010)

    Google Scholar 

  21. Nguyen, T., Chen, S.W., Shivakumar, S.S., Taylor, C.J., Kumar, V.: Unsupervised deep homography: a fast and robust homography estimation model. IEEE Rob. Autom. Lett. 3(3), 2346–2353 (2018). https://doi.org/10.1109/LRA.2018.2809549

    Article  Google Scholar 

  22. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to sift or surf. In: Proceedings of International Conference on Computer Vision, pp. 2564–2571. IEEE (2011)

    Google Scholar 

  23. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  24. Staranowicz, A.N., Brown, G.R., Morbidi, F., Mariottini, G.L.: Practical and accurate calibration of RGB-D cameras using spheres. Comput. Vis. Image Underst. 137, 102–114 (2015). https://doi.org/10.1016/j.cviu.2015.03.013. http://www.sciencedirect.com/science/article/pii/S1077314215000703

  25. Sutskever, I., Martens, J., Dahl, G., Hinton, G.: On the importance of initialization and momentum in deep learning. In: Proceedings of International conference on Machine Learning, pp. 1139–1147 (2013)

    Google Scholar 

  26. Zhang, H., Patel, V.M.: Densely connected pyramid dehazing network. arXiv preprint arXiv:1803.08396 (2018)

  27. Zhu, Y., Newsam, S.: DenseNet for dense flow. arXiv preprint arXiv:1707.06316 (2017)

  28. Zitova, B., Flusser, J.: Image registration methods: a survey. Image Vis. Comput. 21(11), 977–1000 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Zeng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 9905 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeng, R., Denman, S., Sridharan, S., Fookes, C. (2019). Rethinking Planar Homography Estimation Using Perspective Fields. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics