Skip to main content

Single Image Super-Resolution Using Lightweight CNN with Maxout Units

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11366))

Included in the following conference series:

Abstract

Rectified linear units (ReLU) are well-known to obtain higher performance for deep-learning-based applications. However, networks with ReLU tend to perform poorly when the number of parameters is constrained. To overcome, we propose a novel network utilizing maxout units (MU), and show its effectiveness on super-resolution (SR). In this paper, we first reveal that MU can make the filter sizes halved in restoration problems thus leading to compaction of the network. To the best of our knowledge, we are the first to incorporate MU into SR applications and show promising results. In MU, feature maps from a previous convolutional layer are divided into two parts along channels, which are compared element-wise and only their max values are passed to a next layer. Along with interesting properties of MU to be analyzed, we further investigate other variants of MU. Our MU-based SR method reconstructs images with comparable quality compared to previous SR methods, even with smaller parameters.

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2017R1A2A2A05001476).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., Barham, P., Chen, J., et al.: TensorFlow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding (2012)

    Google Scholar 

  4. Cai, B., Xu, X., Jia, K., Qing, C., Tao, D.: DehazeNet: an end-to-end system for single image haze removal. IEEE Trans. Image Proc. 25(11), 5187–5198 (2016)

    Article  MathSciNet  Google Scholar 

  5. Chang, J.R., Chen, Y.S.: Batch-normalized maxout network in network. arXiv preprint arXiv:1511.02583 (2015)

  6. Choi, J.S., Kim, M.: Super-interpolation with edge-orientation-based mapping kernels for low complex 2\(\times \) upscaling. IEEE Trans. Image Proc. 25(1), 469–483 (2016)

    Google Scholar 

  7. Choi, J.S., Kim, M.: A deep convolutional neural network with selection units for super-resolution. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition Workshops, pp. 1150–1156 (2017)

    Google Scholar 

  8. Choi, J.S., Kim, M.: Single image super-resolution using global regression based on multiple local linear mappings. IEEE Trans. Image Proc. 26(3), 1300–1314 (2017)

    Article  MathSciNet  Google Scholar 

  9. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUS). arXiv preprint arXiv:1511.07289 (2015)

  10. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  11. Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolutional networks. IEEE Trans. Pattern Anal. Mach. Intell. 38(2), 295–307 (2016)

    Article  Google Scholar 

  12. Freedman, G., Fattal, R.: Image and video upscaling from local self-examples. ACM Trans. Graph. 30(2), 12 (2011)

    Article  Google Scholar 

  13. Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)

    Article  Google Scholar 

  14. Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: IEEE International Conference Computer Vision, pp. 349–356 (2009)

    Google Scholar 

  15. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A., Bengio, Y.: Maxout networks. arXiv preprint arXiv:1302.4389 (2013)

  16. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on imagenet classification. In: Proceedings of the IEEE International Conference Computer Vision, pp. 1026–1034 (2015)

    Google Scholar 

  17. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  18. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  19. Jia, Y., Shelhamer, E., Donahue, J., et al.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of the ACM International Conference Multimedia, pp. 675–678 (2014)

    Google Scholar 

  20. Jianchao, Y., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  21. Kim, J., Kwon Lee, J., Mu Lee, K.: Accurate image super-resolution using very deep convolutional networks. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition, pp. 1646–1654 (2016)

    Google Scholar 

  22. Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)

    Article  Google Scholar 

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  24. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  25. Ledig, C., Theis, L., Huszár, F., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, vol. 2, p. 4 (2017)

    Google Scholar 

  26. Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks for single image super-resolution. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition Workshops, vol. 1, p. 3 (2017)

    Google Scholar 

  27. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of the International Conference on Machine Learning, vol. 30, p. 3 (2013)

    Google Scholar 

  28. Martin, D., Fowlkes, C., et al.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: Proceedings of the IEEE International Conference on Computer Vision, vol. 2, pp. 416–423 (2001)

    Google Scholar 

  29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  30. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  31. Shi, W., Caballero, J., Huszár, F., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  32. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  33. Swietojanski, P., Li, J., Huang, J.T.: Investigation of maxout networks for speech recognition. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7649–7653 (2014)

    Google Scholar 

  34. Tai, Y., Yang, J., Liu, X.: Image super-resolution via deep recursive residual network. In: Proceedings of the IEEE Conference Computer Vision Pattern Recognition Workshops, vol. 1 (2017)

    Google Scholar 

  35. Timofte, R., Agustsson, E., Van Gool, L., et al.: Ntire 2017 challenge on single image super-resolution: methods and results. In: Proceedings of the IEEE Conference on Computer Vision Pattern Recognition Workshops, pp. 1110–1121 (2017)

    Google Scholar 

  36. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Proc. 13(4), 600–612 (2004)

    Article  Google Scholar 

  38. Yang, C.-Y., Huang, J.-B., Yang, M.-H.: Exploiting self-similarities for single frame super-resolution. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010. LNCS, vol. 6494, pp. 497–510. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19318-7_39

    Chapter  Google Scholar 

  39. Yang, J., Wright, J., Huang, T.S., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Proc. 19(11), 2861–2873 (2010)

    Article  MathSciNet  Google Scholar 

  40. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  41. Zhang, K., Gao, X., Tao, D., Li, X.: Single image super-resolution with non-local means and steering kernel regression. IEEE Trans. Image Proc. 21(11), 4544–4556 (2012)

    Article  MathSciNet  Google Scholar 

  42. Zhang, K., Tao, D., Gao, X., Li, X., Xiong, Z.: Learning multiple linear mappings for efficient single image super-resolution. IEEE Trans. Image Proc. 24(3), 846–861 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munchurl Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 118 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Choi, JS., Kim, M. (2019). Single Image Super-Resolution Using Lightweight CNN with Maxout Units. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11366. Springer, Cham. https://doi.org/10.1007/978-3-030-20876-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20876-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20875-2

  • Online ISBN: 978-3-030-20876-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics