Skip to main content

Predicting Driver Attention in Critical Situations

  • Conference paper
  • First Online:
Book cover Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Included in the following conference series:

Abstract

Robust driver attention prediction for critical situations is a challenging computer vision problem, yet essential for autonomous driving. Because critical driving moments are so rare, collecting enough data for these situations is difficult with the conventional in-car data collection protocol—tracking eye movements during driving. Here, we first propose a new in-lab driver attention collection protocol and introduce a new driver attention dataset, Berkeley DeepDrive Attention (BDD-A) dataset, which is built upon braking event videos selected from a large-scale, crowd-sourced driving video dataset. We further propose Human Weighted Sampling (HWS) method, which uses human gaze behavior to identify crucial frames of a driving dataset and weights them heavily during model training. With our dataset and HWS, we built a driver attention prediction model that outperforms the state-of-the-art and demonstrates sophisticated behaviors, like attending to crossing pedestrians but not giving false alarms to pedestrians safely walking on the sidewalk. Its prediction results are nearly indistinguishable from ground-truth to humans. Although only being trained with our in-lab attention data, the model also predicts in-car driver attention data of routine driving with state-of-the-art accuracy. This result not only demonstrates the performance of our model but also proves the validity and usefulness of our dataset and data collection protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alletto, S., Palazzi, A., Solera, F., Calderara, S., Cucchiara, R.: DR(eye)VE: a dataset for attention-based tasks with applications to autonomous and assisted driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 54–60 (2016)

    Google Scholar 

  2. Bazzani, L., Larochelle, H., Torresani, L.: Recurrent mixture density network for spatiotemporal visual attention. arXiv preprint arXiv:1603.08199 (2016)

  3. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2006)

    Google Scholar 

  4. Bruce, N.D., Tsotsos, J.K.: Saliency, attention, and visual search: an information theoretic approach. J. Vis. 9(3), 5–5 (2009)

    Article  Google Scholar 

  5. Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 41, 740–757 (2018)

    Article  Google Scholar 

  6. Cavanagh, P., Alvarez, G.A.: Tracking multiple targets with multifocal attention. Trends Cogn. Sci. 9(7), 349–354 (2005)

    Article  Google Scholar 

  7. Cornelissen, F.W., Peters, E.M., Palmer, J.: The eyelink toolbox: eye tracking with matlab and the psychophysics toolbox. Behav. Res. Methods Instrum. Comput. 34(4), 613–617 (2002)

    Article  Google Scholar 

  8. Cornia, M., Baraldi, L., Serra, G., Cucchiara, R.: Predicting human eye fixations via an LSTM-based saliency attentive model. arXiv preprint arXiv:1611.09571 (2016)

  9. Erdem, E., Erdem, A.: Visual saliency estimation by nonlinearly integrating features using region covariances. J. Vis. 13(4), 11–11 (2013)

    Article  Google Scholar 

  10. Fridman, L., Langhans, P., Lee, J., Reimer, B.: Driver gaze region estimation without use of eye movement. IEEE Intell. Syst. 31(3), 49–56 (2016)

    Article  Google Scholar 

  11. Groner, R., Walder, F., Groner, M.: Looking at faces: local and global aspects of scanpaths. In: Advances in Psychology, vol. 22, pp. 523–533. Elsevier (1984)

    Google Scholar 

  12. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. In: Advances in Neural Information Processing Systems, pp. 545–552 (2007)

    Google Scholar 

  13. Huang, X., Shen, C., Boix, X., Zhao, Q.: SALICON: reducing the semantic gap in saliency prediction by adapting deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 262–270 (2015)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Kümmerer, M., Theis, L., Bethge, M.: Deep Gaze I: boosting saliency prediction with feature maps trained on ImageNet. In: International Conference on Learning Representations (ICLR 2015) (2015)

    Google Scholar 

  16. Kümmerer, M., Wallis, T.S., Bethge, M.: DeepGaze II: reading fixations from deep features trained on object recognition. arXiv preprint arXiv:1610.01563 (2016)

  17. Liu, N., Han, J., Zhang, D., Wen, S., Liu, T.: Predicting eye fixations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 362–370 (2015)

    Google Scholar 

  18. Liu, Y., Zhang, S., Xu, M., He, X.: Predicting salient face in multiple-face videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4420–4428 (2017)

    Google Scholar 

  19. Mannan, S., Ruddock, K., Wooding, D.: Fixation sequences made during visual examination of briefly presented 2D images. Spat. Vis. 11(2), 157–178 (1997)

    Article  Google Scholar 

  20. Murray, N., Vanrell, M., Otazu, X., Parraga, C.A.: Saliency estimation using a non-parametric low-level vision model. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 433–440. IEEE (2011)

    Google Scholar 

  21. Palazzi, A., Solera, F., Calderara, S., Alletto, S., Cucchiara, R.: Learning where to attend like a human driver. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 920–925. IEEE (2017)

    Google Scholar 

  22. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6517–6525. IEEE (2017)

    Google Scholar 

  23. Rizzolatti, G., Riggio, L., Dascola, I., Umiltá, C.: Reorienting attention across the horizontal and vertical meridians: evidence in favor of a premotor theory of attention. Neuropsychologia 25(1), 31–40 (1987)

    Article  Google Scholar 

  24. Simon, L., Tarel, J.P., Brémond, R.: Alerting the drivers about road signs with poor visual saliency. In: 2009 IEEE Intelligent Vehicles Symposium, pp. 48–53. IEEE (2009)

    Google Scholar 

  25. Tawari, A., Kang, B.: A computational framework for driver’s visual attention using a fully convolutional architecture. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 887–894. IEEE (2017)

    Google Scholar 

  26. Thomas, C.L.: OpenSalicon: an open source implementation of the salicon saliency model. Technical report. TR-2016-02, University of Pittsburgh (2016)

    Google Scholar 

  27. Underwood, G., Humphrey, K., Van Loon, E.: Decisions about objects in real-world scenes are influenced by visual saliency before and during their inspection. Vis. Res. 51(18), 2031–2038 (2011)

    Article  Google Scholar 

  28. Valenti, R., Sebe, N., Gevers, T.: Image saliency by isocentric curvedness and color. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 2185–2192. IEEE (2009)

    Google Scholar 

  29. Wei, Y., Wen, F., Zhu, W., Sun, J.: Geodesic Saliency Using Background Priors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7574, pp. 29–42. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33712-3_3

    Chapter  Google Scholar 

  30. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  31. Yu, F., et al.: BDD100K: a diverse driving video database with scalable annotation tooling. arXiv preprint arXiv:1805.04687 (2018)

  32. Zhang, J., Sclaroff, S.: Saliency detection: a boolean map approach. In: 2013 IEEE International Conference on Computer Vision (ICCV), pp. 153–160. IEEE (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Xia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, Y., Zhang, D., Kim, J., Nakayama, K., Zipser, K., Whitney, D. (2019). Predicting Driver Attention in Critical Situations. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics