Skip to main content

DeepAMD: Detect Early Age-Related Macular Degeneration by Applying Deep Learning in a Multiple Instance Learning Framework

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Abstract

Automatic screening of Age-related Macular Degeneration (AMD) is important for both patients and ophthalmologists. In this paper, we focus on the task of AMD detection at the very early stage from fundus images. The difficulty of this task is that at the very early stage, the signs, e.g., drusen, are too tiny and subtle to be detected by most of the current methods. To address this issue, we apply deep learning in a multiple instance learning framework to catch these subtle features to detect AMD at the very early stage. The deep networks is able to learn a discriminative representation of the subtle signs of AMD. The multiple instance learning framework helps in two ways. First, It is able to choose the location where AMD happens because it works on image patches instead of the whole image. Second, It works on the image of high resolution instead of down sampling the image which may lead to invisibility of the tiny drusen. The experiments are carried out on a dataset consists of 3596 AMD and 1129 normal fundus images. The final average AUC is 0.79, compared with 0.74 of the same neural network but without multiple instance learning.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kawasaki, R., et al.: The prevalence of age-related macular degeneration in Asians: a systematic review and meta-analysis. Ophthalmology 117, 921–927 (2010)

    Article  Google Scholar 

  2. Jager, R.D., Mieler, W.F., Miller, J.W.: Age-related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008)

    Article  Google Scholar 

  3. Bressler, N.M., Bressler, S.B., Fine, S.L.: Age-related macular degeneration. Surv. Ophthalmol. 32, 375–413 (1988)

    Article  Google Scholar 

  4. De Jong, P.T.: Age-related macular degeneration. N. Engl. J. Med. 355, 1474–1485 (2006)

    Article  Google Scholar 

  5. Maamari, R.N., Keenan, J.D., Fletcher, D.A., Margolis, T.P.: A mobile phone-based retinal camera for portable wide field imaging. Brit. J. Ophthalmol. 98, 438–441 (2014)

    Article  Google Scholar 

  6. Ben Sbeh, Z., Cohen, L.D., Mimoun, G., Coscas, G.: A new approach of geodesic reconstruction for drusen segmentation in eye fundus images. IEEE Trans. Med. Imaging 20, 1321–1333 (2001)

    Article  Google Scholar 

  7. Rapantzikos, K., Zervakis, M., Balas, K.: Detection and segmentation of drusen deposits on human retina: potential in the diagnosis of age-related macular degeneration. Med. Image Anal. 7, 95–108 (2003)

    Article  Google Scholar 

  8. Smith, R.T., et al.: Automated detection of macular drusen using geometric background leveling and threshold selection. Arch. Ophthalmol. 123, 200 (2005)

    Article  Google Scholar 

  9. Brandon, L., Hoover, A.: Drusen detection in a retinal image using multi-level analysis. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2878, pp. 618–625. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39899-8_76

    Chapter  Google Scholar 

  10. Ujjwal, K., Chakravarty, A., Sivaswamy, J.: Visual saliency based bright lesion detection and discrimination in retinal images. In: IEEE 10th International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1428–1431 (2013)

    Google Scholar 

  11. Barriga, E., et al.: Multi-scale AM-FM for lesion phenotyping on age-related macular degeneration. In: IEEE International Symposium on Computer-Based Medical Systems, pp. 1–5 (2009)

    Google Scholar 

  12. Köse, C., et al.: A statistical segmentation method for measuring age-related macular degeneration in retinal fundus images. J. Med. Syst. 34, 1–13 (2010)

    Article  Google Scholar 

  13. Quellec, G., Russell, S.R., Abràmoff, M.D.: Optimal filter framework for automated, instantaneous detection of lesions in retinal images. IEEE Trans. Med. Imaging 30, 523–533 (2011)

    Article  Google Scholar 

  14. Liu, H., Xu, Y., Wong, D.W.K., Liu, J.: Effective drusen segmentation from fundus images for age-related macular degeneration screening. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9005, pp. 483–498. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16811-1_32

    Chapter  Google Scholar 

  15. Hijazi, M.H.A., Coenen, F., Zheng, Y.: Retinal image classification using a histogram based approach. In: IEEE International Joint Conference on Neural Networks, pp. 3501–3507

    Google Scholar 

  16. Hijazi, M.H.A., Coenen, F., Zheng, Y.: Retinal image classification for the screening of age-related macular degeneration. In: Bramer, M., Petridis, M., Hopgood, A. (eds.) Research and Development in Intelligent Systems XXVII, pp. 325–338. Springer, London (2011). https://doi.org/10.1007/978-0-85729-130-1_25

    Chapter  Google Scholar 

  17. Hijazi, M.H.A., Jiang, C., Coenen, F., Zheng, Y.: Image classification for age-related macular degeneration screening using hierarchical image decompositions and graph mining. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011. LNCS (LNAI), vol. 6912, pp. 65–80. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23783-6_5

    Chapter  Google Scholar 

  18. Zheng, Y., Hijazi, M.H.A., Coenen, F.: Automated “disease/no disease” grading of age-related macular degeneration by an image mining approach. Invest. Ophthalmol. Vis. Sci. 53, 8310–8318 (2012)

    Article  Google Scholar 

  19. Cheng, J., et al.: Early age-related macular degeneration detection by focal biologically inspired feature. In: IEEE International Conference on Image Processing, pp. 2805–2808 (2012)

    Google Scholar 

  20. Wong, D.W.K., et al.: THALIA-an automatic hierarchical analysis system to detect drusen lesion images for AMD assessment. In: IEEE International Symposium on Biomedical Imaging, pp. 884–887 (2013)

    Google Scholar 

  21. Li, Q., Feng, B., Xie, L., Liang, P., Zhang, H., Wang, T.: A cross-modality learning approach for vessel segmentation in retinal images. IEEE Trans. Med. Imaging 35, 109–118 (2016)

    Article  Google Scholar 

  22. Fu, H., Xu, Y., Lin, S., Wong, D.W.K., Liu, J.: DeepVessel: retinal vessel segmentation via deep learning and conditional random field. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 132–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_16

    Chapter  Google Scholar 

  23. Fu, H., Cheng, J., Xu, Y., Wong, D.W.K., Liu, J., Cao, X.: Joint optic disc and cup segmentation based on multi-label deep network and polar transformation. IEEE TMI 37, 1597–1605 (2018)

    Google Scholar 

  24. Fu, H., et al.: Disc-aware ensemble network for Glaucoma screening from fundus image. IEEE TMI 37, 2493–2501 (2018)

    Google Scholar 

  25. Burlina, P., Freund, D.E., Joshi, N., Wolfson, Y., Bressler, N.M.: Detection of age-related macular degeneration via deep learning. In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 184–188. IEEE (2016)

    Google Scholar 

  26. Lee, C.S., Baughman, D.M., Lee, A.Y.: Deep learning is effective for classifying normal versus age-related macular degeneration oct images. Ophthalmol. Retina 1, 322–327 (2017)

    Article  Google Scholar 

  27. Wong, D.W.K., et al.: Automatic detection of the macula in retinal fundus images using seeded mode tracking approach. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4950–4953. IEEE (2012)

    Google Scholar 

  28. Xu, Y., et al.: Deep learning of feature representation with multiple instance learning for medical image analysis. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1626–1630. IEEE (2014)

    Google Scholar 

  29. Wu, J., Yu, Y., Huang, C., Yu, K.: Deep multiple instance learning for image classification and auto-annotation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3460–3469 (2015)

    Google Scholar 

  30. Kraus, O.Z., Ba, J.L., Frey, B.J.: Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32, i52–i59 (2016)

    Article  Google Scholar 

  31. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  32. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818–2826 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanwu Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, H., Wong, D.W.K., Fu, H., Xu, Y., Liu, J. (2019). DeepAMD: Detect Early Age-Related Macular Degeneration by Applying Deep Learning in a Multiple Instance Learning Framework. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics