Skip to main content

Siamese Generative Adversarial Privatizer for Biometric Data

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Abstract

State-of-the-art machine learning algorithms can be fooled by carefully crafted adversarial examples. As such, adversarial examples present a concrete problem in AI safety. In this work we turn the tables and ask the following question: can we harness the power of adversarial examples to prevent malicious adversaries from learning identifying information from data while allowing non-malicious entities to benefit from the utility of the same data? For instance, can we use adversarial examples to anonymize biometric dataset of faces while retaining usefulness of this data for other purposes, such as emotion recognition? To address this question, we propose a simple yet effective method, called Siamese Generative Adversarial Privatizer (SGAP), that exploits the properties of a Siamese neural network to find discriminative features that convey identifying information. When coupled with a generative model, our approach is able to correctly locate and disguise identifying information, while minimally reducing the utility of the privatized dataset. Extensive evaluation on a biometric dataset of fingerprints and cartoon faces confirms usefulness of our simple yet effective method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Abadi, M., et al.: On the protection of private information in machine learning systems: two recent approaches. CoRR abs/1708.08022 (2017)

    Google Scholar 

  2. Aneja, D., Colburn, A., Faigin, G., Shapiro, L., Mones, B.: Modeling stylized character expressions via deep learning. In: Lai, S.-H., Lepetit, V., Nishino, K., Sato, Y. (eds.) ACCV 2016. LNCS, vol. 10112, pp. 136–153. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54184-6_9

    Chapter  Google Scholar 

  3. Baluja, S., Fischer, I.: Adversarial transformation networks: learning to generate adversarial examples. CoRR abs/1703.09387 (2017)

    Google Scholar 

  4. Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., Shah, R.: Signature verification using a “siamese” time delay neural network. In: Advances in Neural Information Processing Systems, vol. 6, pp. 737–744. Morgan-Kaufmann (1994)

    Google Scholar 

  5. Chen, J., Konrad, J., Ishwar, P.: VGAN-based image representation learning for privacy-preserving facial expression recognition. CoRR abs/1803.07100 (2018). http://arxiv.org/abs/1803.07100

  6. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley Series in Telecommunications and Signal Processing. Wiley, New York (2006)

    MATH  Google Scholar 

  7. Dwork, C.: Differential privacy: a survey of results. In: International Conference on Theory and Applications of Models of Computation, pp. 1–19 (2008)

    Google Scholar 

  8. Famm, K., Litt, B., Tracey, K.J., Boyden, E.S., Slaoui, M.: Drug discovery: a jump-start for electroceuticals. Nature 496(7444), 159–161 (2013)

    Article  Google Scholar 

  9. Finn, E.S., et al.: Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18(11), 1664–1671 (2015)

    Article  Google Scholar 

  10. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(7), 179–188 (1936)

    Article  Google Scholar 

  11. Fournier, N., Delattre, S.: On the Kozachenko-Leonenko entropy estimator. ArXiv e-prints, February 2016

    Google Scholar 

  12. Glasser, M.F., et al.: A multi-modal parcellation of human cerebral cortex. Nature 536(7615), 171–178 (2016)

    Article  Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014)

    Google Scholar 

  14. Gymrek, M., McGuire, A.L., Golan, D., Halperin, E., Erlich, Y.: Identifying personal genomes by surname inference. Science 339(6117), 321–324 (2013)

    Article  Google Scholar 

  15. Harmanci, A., Gerstein, M.: Quantification of private information leakage from phenotype-genotype data: linking attacks. Nat. Methods 13(3), 251–256 (2016)

    Article  Google Scholar 

  16. Hayes, J., Melis, L., Danezis, G., De Cristofaro, E.: LOGAN: evaluating privacy leakage of generative models using generative adversarial networks. ArXiv e-prints (2017)

    Google Scholar 

  17. Huang, C., Kairouz, P., Chen, X., Sankar, L., Rajagopal, R.: Context-aware generative adversarial privacy. CoRR abs/1710.09549 (2017)

    Google Scholar 

  18. Kairouz, P., Bonawitz, K., Ramage, D.: Discrete distribution estimation under local privacy. CoRR abs/1602.07387 (2016)

    Google Scholar 

  19. Kos, J., Fischer, I., Song, D.: Adversarial examples for generative models. CoRR abs/1702.06832 (2017)

    Google Scholar 

  20. Lee, H., Han, S., Lee, J.: Generative adversarial trainer: defense to adversarial perturbations with GAN. CoRR abs/1705.03387 (2017)

    Google Scholar 

  21. Liang, B., Li, H., Su, M., Li, X., Shi, W., Wang, X.: Detecting adversarial examples in deep networks with adaptive noise reduction. CoRR abs/1705.08378 (2017)

    Google Scholar 

  22. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). http://www.jmlr.org/papers/v9/vandermaaten08a.html

    MATH  Google Scholar 

  23. Mirjalili, V., Raschka, S., Namboodiri, A.M., Ross, A.: Semi-adversarial networks: convolutional autoencoders for imparting privacy to face images. CoRR abs/1712.00321 (2017)

    Google Scholar 

  24. Mirjalili, V., Ross, A.: Soft biometric privacy: retaining biometric utility of face images while perturbing gender. In: IJCB, pp. 564–573 (2017)

    Google Scholar 

  25. Narayanan, A., Shmatikov, V.: Robust de-anonymization of large sparse datasets. In: 2008 IEEE Symposium on Security and Privacy, SP 2008, pp. 111–125. IEEE (2008)

    Google Scholar 

  26. NIST: NIST 8-bit gray scale images of fingerprint image groups (FIGS)

    Google Scholar 

  27. Oh, S.J., Fritz, M., Schiele, B.: Adversarial image perturbation for privacy protection - a game theory perspective. CoRR abs/1703.09471 (2017)

    Google Scholar 

  28. Orekondy, T., Fritz, M., Schiele, B.: Connecting pixels to privacy and utility: automatic redaction of private information in images. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2018

    Google Scholar 

  29. Rajpurkar, P., Hannun, A.Y., Haghpanahi, M., Bourn, C., Ng, A.Y.: Cardiologist-level arrhythmia detection with convolutional neural networks. ArXiv e-prints (2017)

    Google Scholar 

  30. Raval, N., Machanavajjhala, A., Cox, L.P.: Protecting visual secrets using adversarial nets. In: CVPR Workshop Proceedings (2017)

    Google Scholar 

  31. Sun, Q., Ma, L., Oh, S.J., Gool, L.V., Schiele, B., Fritz, M.: Natural and effective obfuscation by head inpainting. CoRR abs/1711.09001 (2017)

    Google Scholar 

  32. Sweeney, L., Abu, A., Winn, J.: Identifying participants in the personal genome project by name (a re-identification experiment). CoRR abs/1304.7605 (2013)

    Google Scholar 

  33. Tripathy, A., Wang, Y., Ishwar, P.: Privacy-preserving adversarial networks. CoRR abs/1712.07008 (2017)

    Google Scholar 

  34. Trzcinski, T., Lepetit, V.: Efficient discriminative projections for compact binary descriptors. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 228–242. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_17

    Chapter  Google Scholar 

  35. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  36. Zhao, H., Gallo, O., Frosio, I., Kautz, J.: Loss functions for neural networks for image processing. CoRR abs/1511.08861 (2015). http://arxiv.org/abs/1511.08861

Download references

Acknowledgment

The work was partially supported as RENOIR Project by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 691152 (project RENOIR) and by Ministry of Science and Higher Education (Poland), grant No. W34/H2020/2016. We thank NVIDIA Corporation for donating Titan Xp GPU that was used for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Witold Oleszkiewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Oleszkiewicz, W., Kairouz, P., Piczak, K., Rajagopal, R., Trzciński, T. (2019). Siamese Generative Adversarial Privatizer for Biometric Data. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics