Skip to main content

Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Included in the following conference series:

Abstract

Current image segmentation involves strongly non-uniform, anisotropic and asymmetric measures of path length, which challenges available algorithms. In order to meet these challenges, this paper applies the Finsler metric to the geodesic method based on heat diffusion. This metric is non-Riemannian, anisotropic and asymmetric, which helps the heat to flow more on the features of interest. Experiments demonstrate the feasibility of the proposed method. The experimental results show that our algorithm is of strong robustness and effectiveness. The proposed method can be applied to contour detection and tubular structure segmentation in images, such as vessel segmentation in medical images and road extraction in satellite images and so on.

Supported by the National Science Foundation of China (grant 61625305).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akagi, G., Ishige, K., Sato, R.: The cauchy problem for the finsler heat equation. arXiv preprint arXiv:1710.00456 (2017)

  2. Arbeláez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Astola, L., Florack, L.: Finsler geometry on higher order tensor fields and applications to high angular resolution diffusion imaging. Int. J. Comput. Vis. 92(3), 325–336 (2011)

    Article  MathSciNet  Google Scholar 

  4. Belyaev, A.G., Fayolle, P.A.: On variational and PDE-based distance function approximations. In: Computer Graphics Forum, vol. 34, pp. 104–118. Wiley (2015)

    Google Scholar 

  5. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210 (2011)

    Article  Google Scholar 

  6. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  Google Scholar 

  7. Chen, D., Cohen, L.D.: Fast asymmetric fronts propagation for image segmentation. J. Math. Imaging Vis. 60, 1–18 (2017)

    MathSciNet  Google Scholar 

  8. Chen, D., Mirebeau, J.M., Cohen, L.D.: Global minimum for a finsler elastica minimal path approach. Int. J. Comput. Vis. 122(3), 458–483 (2017)

    Article  MathSciNet  Google Scholar 

  9. Chern, S.S.: Finsler geometry is just riemannian geometry without the quadratic equation. Not. Am. Math. Soc. 43(9), 959–963 (1996)

    MATH  Google Scholar 

  10. Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat: a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32(5), 152 (2013)

    Article  Google Scholar 

  11. Fehrenbach, J., Mirebeau, J.M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49(1), 123–147 (2014)

    Article  MathSciNet  Google Scholar 

  12. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  13. Hysing, S.R., Turek, S.: The Eikonal equation: numerical efficiency vs. algorithmic complexity on quadrilateral grids. In: Proceedings of Algoritmy, vol. 22 (2005)

    Google Scholar 

  14. Lin, B., Yang, J., He, X., Ye, J.: Geodesic distance function learning via heat flow on vector fields. In: International Conference on Machine Learning, pp. 145–153 (2014)

    Google Scholar 

  15. Melonakos, J., Pichon, E., Angenent, S., Tannenbaum, A.: Finsler active contours. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 412–423 (2008)

    Article  Google Scholar 

  16. Mirebeau, J.M.: Efficient fast marching with finsler metrics. Numer. Math. 126(3), 515–557 (2014)

    Article  MathSciNet  Google Scholar 

  17. Mirebeau, J.M.: Anisotropic fast-marching on cartesian grids using Voronoi’s first reduction of quadratic forms (2017)

    Google Scholar 

  18. Ohta, S.I., Sturm, K.T.: Heat flow on Finsler manifolds. Commun. Pure Appl. Math. 62(10), 1386–1433 (2009)

    Article  MathSciNet  Google Scholar 

  19. Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D., et al.: Geodesic methods in computer vision and graphics. Found. Trends® Comput. Graph. Vis. 5(3–4), 197–397 (2010)

    Google Scholar 

  20. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. U.S.A. 93(4), 1591–1595 (1996)

    Article  MathSciNet  Google Scholar 

  21. Solomon, J., et al.: Convolutional wasserstein distances: efficient optimal transportation on geometric domains. ACM Trans. Graph. (TOG) 34(4), 66 (2015)

    Article  Google Scholar 

  22. Varadhan, S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20(2), 431–455 (1967)

    Article  MathSciNet  Google Scholar 

  23. Weickert, J.: Coherence-Enhancing Diffusion Filtering. Kluwer Academic Publishers (1999)

    Google Scholar 

  24. Yang, F., Cohen, L.D.: Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces. J. Math. Imaging Vis. 55(2), 210–228 (2016)

    Article  MathSciNet  Google Scholar 

  25. Yang, F., Cohen, L.D.: Tubular structure segmentation based on heat diffusion. In: Lauze, F., Dong, Y., Dahl, A.B. (eds.) SSVM 2017. LNCS, vol. 10302, pp. 54–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58771-4_5

    Chapter  Google Scholar 

  26. Zach, C., Shan, L., Niethammer, M.: Globally optimal finsler active contours. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 552–561. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_56

    Chapter  Google Scholar 

  27. Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74(250), 603–627 (2005)

    Article  MathSciNet  Google Scholar 

  28. Zou, Q., Zhang, J., Deng, B., Zhao, J.: Iso-level tool path planning for free-form surfaces. Comput. Aided Des. 53, 117–125 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Jean-Marie Mirebeau for his insightful suggestions on the numerical solutions to asymmetric heat diffusion. The authors would also like to thank Dr. Xin Su for his useful comments that allowed us to improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, F., Chai, L., Chen, D., Cohen, L. (2019). Geodesic via Asymmetric Heat Diffusion Based on Finsler Metric. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics