Skip to main content

EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11365))

Included in the following conference series:

Abstract

Recent convolutional neural networks, especially end-to-end disparity estimation models, achieve remarkable performance on stereo matching task. However, existed methods, even with the complicated cascade structure, may fail in the regions of non-textures, boundaries and tiny details. Focus on these problems, we propose a multi-task network EdgeStereo that is composed of a backbone disparity network and an edge sub-network. Given a binocular image pair, our model enables end-to-end prediction of both disparity map and edge map. Basically, we design a context pyramid to encode multi-scale context information in disparity branch, followed by a compact residual pyramid for cascaded refinement. To further preserve subtle details, our EdgeStereo model integrates edge cues by feature embedding and edge-aware smoothness loss regularization. Comparative results demonstrates that stereo matching and edge detection can help each other in the unified model. Furthermore, our method achieves state-of-art performance on both KITTI Stereo and Scene Flow benchmarks, which proves the effectiveness of our design.

This research is supported by the funding from NSFC programs (61673269, 61273285, U1764264).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achtelik, M., Bachrach, A., He, R., Prentice, S., Roy, N.: Stereo vision and laser odometry for autonomous helicopters in GPS-denied indoor environments. In: Unmanned Systems Technology XI, vol. 7332, p. 733219 (2009)

    Google Scholar 

  2. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. TPAMI 33(5), 898–916 (2011)

    Article  Google Scholar 

  3. Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: ICML, pp. 41–48 (2009)

    Google Scholar 

  4. Bleyer, M., Rother, C., Kohli, P., Scharstein, D., Sinha, S.: Object stereo—joint stereo matching and object segmentation. In: CVPR, pp. 3081–3088 (2011)

    Google Scholar 

  5. Chang, J.R., Chen, Y.S.: Pyramid stereo matching network. In: CVPR (2018)

    Google Scholar 

  6. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. TPAMI 40(4), 834–848 (2018)

    Article  Google Scholar 

  7. Cheng, J., Tsai, Y.H., Wang, S., Yang, M.H.: SegFlow: joint learning for video object segmentation and optical flow. In: ICCV, pp. 686–695 (2017)

    Google Scholar 

  8. Dosovitskiy, A., Fischer, P., Ilg, E., Hausser, P., Hazirbas, C.: Flownet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  9. Dosovitskiy, A., Fischery, P., Ilg, E., HUsser, P.: Flownet: learning optical flow with convolutional networks. In: ICCV, pp. 2758–2766 (2015)

    Google Scholar 

  10. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The Kitti vision benchmark suite. In: CVPR, pp. 3354–3361 (2012)

    Google Scholar 

  11. Gidaris, S., Komodakis, N.: Detect, replace, refine: deep structured prediction for pixel wise labeling. In: CVPR, pp. 5248–5257 (2017)

    Google Scholar 

  12. Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: CVPR, pp. 6602–6611 (2017)

    Google Scholar 

  13. Guney, F., Geiger, A.: Displets: resolving stereo ambiguities using object knowledge. In: CVPR, pp. 4165–4175 (2015)

    Google Scholar 

  14. Hirschmuller, H.: Accurate and efficient stereo processing by semi-global matching and mutual information. In: CVPR, pp. 807–814 (2005)

    Google Scholar 

  15. Jia, Y., et al.: Caffe: convolutional architecture for fast feature embedding. In: ACMMM, pp. 675–678 (2014)

    Google Scholar 

  16. Kendall, A., Martirosyan, H., Dasgupta, S., Henry, P., Kennedy, R.: End-to-end learning of geometry and context for deep stereo regression. In: ICCV (2017)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  18. Liang, Z., Feng, Y., Guo, Y., Liu, H.: Learning deep correspondence through prior and posterior feature constancy. arXiv preprint arXiv:1712.01039 (2017)

  19. Liu, W., Rabinovich, A., Berg, A.C.: ParseNet: looking wider to see better. In: ICLR (2016)

    Google Scholar 

  20. Liu, Y., Lew, M.S.: Learning relaxed deep supervision for better edge detection. In: CVPR, pp. 231–240 (2016)

    Google Scholar 

  21. Liu, Y., Cheng, M.M., Hu, X., Wang, K., Bai, X.: Richer convolutional features for edge detection. In: CVPR, pp. 5872–5881 (2017)

    Google Scholar 

  22. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431–3440 (2015)

    Google Scholar 

  23. Luo, W., Schwing, A.G., Urtasun, R.: Efficient deep learning for stereo matching. In: CVPR, pp. 5695–5703 (2016)

    Google Scholar 

  24. Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: CVPR, pp. 4040–4048 (2016)

    Google Scholar 

  25. Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: CVPR, pp. 3061–3070 (2015)

    Google Scholar 

  26. Mottaghi, R., Chen, X., Liu, X., Cho, N.G., Lee, S.W.: The role of context for object detection and semantic segmentation in the wild. In: CVPR, pp. 891–898 (2014)

    Google Scholar 

  27. Pang, J., Sun, W., Ren, J., Yang, C., Yan, Q.: Cascade residual learning: a two-stage convolutional neural network for stereo matching. In: ICCV Workshop, vol. 3, pp. 1057–7149 (2017)

    Google Scholar 

  28. Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. IJCV 47(1–3), 7–42 (2002)

    Article  Google Scholar 

  29. Schmid, K., Tomic, T., Ruess, F., Hirschmüller, H., Suppa, M.: Stereo vision based indoor/outdoor navigation for flying robots. In: IROS, pp. 3955–3962 (2013)

    Google Scholar 

  30. Seki, A., Pollefeys, M.: Patch based confidence prediction for dense disparity map. In: BMVC, vol. 2, p. 4 (2016)

    Google Scholar 

  31. Seki, A., Pollefeys, M.: SGM-nets: semi-global matching with neural networks. In: CVPR, pp. 21–26 (2017)

    Google Scholar 

  32. Shaked, A., Wolf, L.: Improved stereo matching with constant highway networks and reflective confidence learning. In: CVPR, pp. 4641–4650 (2017)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  34. Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395–1403 (2015)

    Google Scholar 

  35. Yamaguchi, K., McAllester, D., Urtasun, R.: Efficient joint segmentation, occlusion labeling, stereo and flow estimation. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 756–771. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_49

    Chapter  Google Scholar 

  36. Yang, G., Zhao, H., Shi, J., Deng, Z., Jia, J.: SegStereo: exploiting semantic information for disparity estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 660–676. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_39

    Chapter  Google Scholar 

  37. Yu, L., Wang, Y., Wu, Y., Jia, Y.: Deep stereo matching with explicit cost aggregation sub-architecture. In: AAAI (2018)

    Google Scholar 

  38. Zbontar, J., LeCun, Y.: Stereo matching by training a convolutional neural network to compare image patches. JMLR 17(1–32), 2 (2016)

    MATH  Google Scholar 

  39. Zhang, L., Seitz, S.M.: Estimating optimal parameters for mrf stereo from a single image pair. TPAMI 29(2), 331–342 (2007)

    Article  Google Scholar 

  40. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR, pp. 2881–2890 (2017)

    Google Scholar 

  41. Zhong, Y., Dai, Y., Li, H.: Self-supervised learning for stereo matching with self-improving ability. In: CVPR (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xu Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, X., Zhao, X., Hu, H., Fang, L. (2019). EdgeStereo: A Context Integrated Residual Pyramid Network for Stereo Matching. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11365. Springer, Cham. https://doi.org/10.1007/978-3-030-20873-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20873-8_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20872-1

  • Online ISBN: 978-3-030-20873-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics