A Novel Multi-scale Invariant Descriptor Based on Contour and Texture for Shape Recognition

  • Jishan Guo
  • Yi Rong
  • Yongsheng Gao
  • Ying Liu
  • Shengwu XiongEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11364)


This paper proposes a novel multi-scale descriptor for shape recognition. The contour of shape is represented by a sequence of sample points with uniform spacing. Straight lines connected between two moving contour points are used to cut the shape. The lengths of the contour segments between the two sampled contour points determine the levels of scales. Then the geometric features of the cut contour and the interior texture features around the straight lines are extracted at each scale. This method not only has the powerful discriminability to describe a shape from coarse to fine, but also is invariant to scale, rotation, translation and mirror transformations. Experiments conducted on five image datasets (COIL-20, Flavia, Swedish, Leaf100 and ETH-80) demonstrate that the proposed method significantly outperforms the state-of-the-art methods.


Multi-scale Shape recognition Contour Texture 



This work is partially supported by National Key R&D Program of China (No. 2016YFD0101903), National Natural Science Foundation of China (No. 61702386, 61672398), Major Technical Innovation Program of Hubei Province (No. 2017AAA122), Key Natural Science Foundation of Hubei Province of China (No. 2017CFA012), the Fundamental Research Funds for the Central Universities (No. 185210006).


  1. 1.
    Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circ. Syst. Video Technol. 14(5), 742–753 (2004)CrossRefGoogle Scholar
  2. 2.
    Alajlan, N., El Rube, I., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recogn. 40(7), 1911–1920 (2007)CrossRefGoogle Scholar
  3. 3.
    Bai, X., Wang, B., Yao, C., Liu, W., Tu, Z.: Co-transduction for shape retrieval. IEEE Trans. Image Process. 21(5), 2747–2757 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Belongie, S.J., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)CrossRefGoogle Scholar
  5. 5.
    Chen, Y.W., Chen, Y.Q.: Invariant description and retrieval of planar shapes using radon composite features. IEEE Trans. Sig. Process. 56(10), 4762–4771 (2008)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)Google Scholar
  7. 7.
    Hu, R.X., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21(11), 4667–4672 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kim, H.K., Kim, J.D.: Region-based shape descriptor invariant to rotation, scale and translation. Sig. Process. Image Commun. 16(1), 87–93 (2000)CrossRefGoogle Scholar
  9. 9.
    Korn, P., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and effective retrieval of medical tumor shapes. IEEE Trans. Knowl. Data Eng. 10(6), 889–904 (1998)CrossRefGoogle Scholar
  10. 10.
    Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. II-409. IEEE (2003)Google Scholar
  11. 11.
    Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach Intell. 29(2), 286–299 (2007)CrossRefGoogle Scholar
  12. 12.
    Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)CrossRefGoogle Scholar
  13. 13.
    Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: A shape-based approach for leaf classification using multiscaletriangular representation. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 127–134. ACM (2013)Google Scholar
  14. 14.
    Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20) (1996)Google Scholar
  15. 15.
    Neumann, J., Samet, H., Soffer, A.: Integration of local and global shape analysis for logo classification. Pattern Recogn. Lett. 23(12), 1449–1457 (2002)CrossRefGoogle Scholar
  16. 16.
    Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)CrossRefGoogle Scholar
  17. 17.
    Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000). Scholar
  18. 18.
    Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)CrossRefGoogle Scholar
  19. 19.
    Söderkvist, O.: Computer vision classification of leaves from Swedish trees (2001)Google Scholar
  20. 20.
    Wang, B., Gao, Y.: Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval. IEEE Trans. Image Process. 23(9), 4101–4111 (2014)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Wang, B., Gao, Y.: Structure integral transform versus radon transform: a 2D mathematical tool for invariant shape recognition. IEEE Trans. Image Process. 25(12), 5635–5648 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Wang, B., Gao, Y., Sun, C., Blumenstein, M., La Salle, J.: Can walking and measuring along chord bunches better describe leaf shapes? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6119–6128 (2017)Google Scholar
  23. 23.
    Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification. Pattern Recogn. 47(6), 2116–2125 (2014)CrossRefGoogle Scholar
  24. 24.
    Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F., Xiang, Q.L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16. IEEE (2007)Google Scholar
  25. 25.
    Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Gao, W., Chen, X., Zhao, D.: Learning informative features for spatial histogram-based object detection. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1806–1811. IEEE (2005)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Jishan Guo
    • 1
  • Yi Rong
    • 1
  • Yongsheng Gao
    • 2
  • Ying Liu
    • 1
  • Shengwu Xiong
    • 1
    Email author
  1. 1.Wuhan University of TechnologyWuhanChina
  2. 2.School of EngineeringGriffith UniversityBrisbaneAustralia

Personalised recommendations