Skip to main content

Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Abstract

This paper deals with morphological characterization of unstructured 3D point clouds issued from LiDAR data. A large majority of studies first rasterize 3D point clouds onto regular 2D grids and then use standard 2D image processing tools for characterizing data. In this paper, we suggest instead to keep the 3D structure as long as possible in the process. To this end, as raw LiDAR point clouds are unstructured, we first propose some voxelization strategies and then extract some morphological features on voxel data. The results obtained with attribute filtering show the ability of this process to efficiently extract useful information.

This work was financially supported by Région Bretagne (CAMLOT doctoral project).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aijazi, A., Checchin, P., Trassoudaine, L.: Segmentation based classification of 3D urban point clouds: a super-voxel based approach with evaluation. Remote Sens. 5(4), 1624–1650 (2013)

    Article  Google Scholar 

  2. Calderon, S., Boubekeur, T.: Point morphology. ACM Trans. Graph. 33(44) (2014)

    Article  Google Scholar 

  3. Dufour, A., et al.: Filtering and segmentation of 3D angiographic data: advances based on mathematical morphology. Med. Image Anal. 17(2), 147–164 (2013)

    Article  Google Scholar 

  4. Ferdosi, B.J., Buddelmeijer, H., Trager, S., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Finding and visualizing relevant subspaces for clustering high-dimensional astronomical data using connected morphological operators. In: IEEE Symposium on Visual Analytics Science and Technology, pp. 35–42 (2010)

    Google Scholar 

  5. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_9

    Chapter  MATH  Google Scholar 

  6. Gorte, B., Pfeifer, N.: Structuring laser-scanned trees using 3D mathematical morphology. Int. Arch. Photogrammetry Remote Sens. 35(B5), 929–933 (2004)

    Google Scholar 

  7. Grossiord, E., Talbot, H., Passat, N., Meignan, M., Terve, P., Najman, L.: Hierarchies and shape-space for PET image segmentation. In: IEEE International Symposium on Biomedical Imaging, pp. 1118–1121 (2015)

    Google Scholar 

  8. Guiotte, F., Lefevre, S., Corpetti, T.: IEEE/ISPRS Joint Urban Remote Sensing Event (2019)

    Google Scholar 

  9. Hernández, J., Marcotegui, B.: Ultimate attribute opening segmentation with shape information. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 205–214. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03613-2_19

    Chapter  Google Scholar 

  10. Kiwanuka, F.N., Ouzounis, G.K., Wilkinson, M.H.F.: Surface-area-based attribute filtering in 3D. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 70–81. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03613-2_7

    Chapter  Google Scholar 

  11. Kiwanuka, F.N., Wilkinson, M.H.F.: Radial moment invariants for attribute filtering in 3D. In: Köthe, U., Montanvert, A., Soille, P. (eds.) WADGMM 2010. LNCS, vol. 7346, pp. 68–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32313-3_5

    Chapter  Google Scholar 

  12. Padilla, F.J.A., et al.: Hierarchical forest attributes for multimodal tumor segmentation on FDG-PET/contrast-enhanced CT. In: IEEE International Symposium on Biomedical Imaging, pp. 163–167 (2018)

    Google Scholar 

  13. Peternell, M., Steiner, T.: Minkowski sum boundary surfaces of 3D-objects. Graph. Models 69(3–4), 180–190 (2007)

    Article  Google Scholar 

  14. Roynard, X., Deschaud, J.E., Goulette, F.: Paris-Lille-3D: a large and high-quality ground truth urban point cloud dataset for automatic segmentation and classification. ArXiv e-prints (2017)

    Google Scholar 

  15. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE Trans. Image Process. 7(4), 555–570 (1998)

    Article  Google Scholar 

  16. Salembier, P., Wilkinson, M.: Connected operators. IEEE Signal Process. Mag. 26(6), 136–157 (2009)

    Article  Google Scholar 

  17. Serna, A., Marcotegui, B., Hernández, J.: Segmentation of facades from urban 3D point clouds using geometrical and morphological attribute-based operators. ISPRS Int. J. Geo-Inf. 5(1), 6 (2016)

    Article  Google Scholar 

  18. Serna, A., Marcotegui, B.: Detection, segmentation and classification of 3D urban objects using mathematical morphology and supervised learning. ISPRS J. Photogrammetry Remote Sens. 93, 243–255 (2014)

    Article  Google Scholar 

  19. Urbach, E., Wilkinson, M.: Shape-only granulometries and grey-scale shape filters. In: International Symposium on Mathematical Morphology, pp. 305–314 (2002)

    Google Scholar 

  20. Urien, H., Buvat, I., Rougon, N., Soussan, M., Bloch, I.: Brain lesion detection in 3D PET images using max-trees and a new spatial context criterion. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds.) ISMM 2017. LNCS, vol. 10225, pp. 455–466. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57240-6_37

    Chapter  MATH  Google Scholar 

  21. Westenberg, M.A., Roerdink, J.B.T.M., Wilkinson, M.H.F.: Volumetric attribute filtering and interactive visualization using the max-tree representation. IEEE Trans. Image Process. 16(12), 2943–2952 (2007)

    Article  MathSciNet  Google Scholar 

  22. Wilkinson, M.H.F., Westenberg, M.A.: Shape preserving filament enhancement filtering. In: Niessen, W.J., Viergever, M.A. (eds.) MICCAI 2001. LNCS, vol. 2208, pp. 770–777. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45468-3_92

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florent Guiotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guiotte, F., Lefèvre, S., Corpetti, T. (2019). Attribute Filtering of Urban Point Clouds Using Max-Tree on Voxel Data. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics