Skip to main content

Introducing Multivariate Connected Openings and Closings

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11564))

  • 677 Accesses

Abstract

Component trees provide a high-level, hierarchical, and contrast invariant representation of images, suitable for many image processing tasks. Yet their definition is ill-formed on multivariate data, e.g., color images, multi-modality images, multi-band images, and so on. Common workarounds such as marginal processing, or imposing a total order on data are not satisfactory and yield many problems, such as artifacts, loss of invariances, etc. In this paper, inspired by the way the Multivariate Tree of Shapes (MToS) has been defined, we propose a definition for a Multivariate min-tree or max-tree. We do not impose an arbitrary total ordering on values; we only use the inclusion relationship between components. As a straightforward consequence, we thus have a new class of multivariate connected openings and closings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Einige Kreise, from Vasily Kandinsky, 2016 (Solomon R. Guggenheim Museum, New York, ©2018 Artists Rights Society, New York/ADAGP, Paris).

  2. 2.

    Some extra illustrations can be found on https://publications.lrde.epita.fr/carlinet.19.ismm.

References

  1. Aptoula, E., Lefèvre, S.: A comparative study on multivariate mathematical morphology. Pattern Recognit. 40(11), 2914–2929 (2007)

    Article  Google Scholar 

  2. Breen, E.J., Jones, R.: Attribute openings, thinnings, and granulometries. Comput. Vis. Image Underst. 64(3), 377–389 (1996)

    Article  Google Scholar 

  3. Cao, F., Lisani, J.-L., Morel, J.-M., Musé, P., Sur, F.: A Theory of Shape Identification. LNM, vol. 1948. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68481-7

    Book  MATH  Google Scholar 

  4. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

    Article  MathSciNet  Google Scholar 

  5. Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)

    Article  MathSciNet  Google Scholar 

  6. Carlinet, E., Géraud, T., Crozet, S.: The tree of shapes turned into a max-tree: a simple and efficient linear algorithm. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 1488–1492, Athens, Greece, October 2018

    Google Scholar 

  7. Caselles, V., Monasse, P.: Grain filters. JMIV 17(3), 249–270 (2002)

    Article  MathSciNet  Google Scholar 

  8. Caselles, V., Coll, B., Morel, J.-M.: Topographic maps and local contrast changes in natural images. Int. J. Comput. Vis. 33(1), 5–27 (1999)

    Article  Google Scholar 

  9. Coll, B., Froment, J.: Topographic maps of color images. In: Proceedings of the International Conference on Pattern Recognition (ICPR), vol. 3, pp. 609–612 (2000)

    Google Scholar 

  10. Lézoray, O.: Complete lattice learning for multivariate mathematical morphology. J. Vis. Commun. Image Represent. 35, 220–235 (2016)

    Article  Google Scholar 

  11. Lezoray, O., Elmoataz, A.: Nonlocal and multivariate mathematical morphology. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 129–132 (2012)

    Google Scholar 

  12. Lezoray, O., Meurie, C., Elmoataz, A.: A graph approach to color mathematical morphology. In: Proceedings of the IEEE International Symposium on Signal Processing and Information Technology, pp. 856–861 (2005)

    Google Scholar 

  13. Lezoray, O., Charrier, C., Elmoataz, A.: Rank transformation and manifold learning for multivariate mathematical morphology. In: Proceedings of European Signal Processing Conference, vol. 1, pp. 35–39 (2009)

    Google Scholar 

  14. Meijster, A., Westenberg, M., Wilkinson, M., Hamza, M.: Interactive shape preserving filtering and visualization of volumetric data. In: Proceedings of the 5th IASTED Conference on Computer Graphics and Imaging (CGIM), pp. 640–643 (2002)

    Google Scholar 

  15. Naegel, B., Passat, N.: Component-trees and multi-value images: a comparative study. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 261–271. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03613-2_24

    Chapter  MATH  Google Scholar 

  16. Naegel, B., Passat, N.: Towards connected filtering based on component-graphs. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 353–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38294-9_30

    Chapter  Google Scholar 

  17. Ouzounis, G.K., Wilkinson, M.H.: Mask-based second-generation connectivity and attribute filters. IEEE Trans. PAMI 29(6), 990–1004 (2007)

    Article  Google Scholar 

  18. Passat, N., Naegel, B.: An extension of component-trees to partial orders. In: Proceedings of the International Conference on Image Processing (ICIP), pp. 3933–3936 (2009)

    Google Scholar 

  19. Perret, B., Lefèvre, S., Collet, C., Slezak, E.: Connected component trees for multivariate image processing and applications in astronomy. In: Proceedings of the International Conference on Pattern Recognition (ICPR), pp. 4089–4092, August 2010

    Google Scholar 

  20. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process. 21(2), 129–154 (1990)

    Article  MathSciNet  Google Scholar 

  21. Ronse, C.: Ordering partial partitions for image segmentation and filtering: merging, creating and inflating blocks. J. Math. Imaging Vis. 49(1), 202–233 (2014)

    Article  MathSciNet  Google Scholar 

  22. Salembier, P., Serra, J.: Flat zones filtering, connected operators, and filters by reconstruction. IEEE Trans. Image Process. 4(8), 1153–1160 (1995)

    Article  Google Scholar 

  23. Salembier, P., Oliveras, A., Garrido, L.: Antiextensive connected operators for image and sequence processing. IEEE TIP 7(4), 555–570 (1998)

    Google Scholar 

  24. Tushabe, F., Wilkinson, M. : Color processing using max-trees: a comparison on image compression. In Proceedings of the International Conference on Systems and Informatics (ICSAI), pp. 1374–1380 (2012)

    Google Scholar 

  25. Urbach, E.R., Wilkinson, M.H.F.: Shape-only granulometries and grey-scale shape filters. In: Mathematical Morphology and Its Applications to Signal and Image Processing-Proceedings of the International Symposium on Mathematical Morphology (ISMM), vol. 2002, pp. 305–314 (2002)

    Google Scholar 

  26. Veganzones, M.Á., Dalla Mura, M., Tochon, G., Chanussot, J.: Binary partition trees-based spectral-spatial permutation ordering. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 434–445. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18720-4_37

    Chapter  Google Scholar 

  27. Velasco-Forero, S., Angulo, J.: Supervised ordering in \(\cal{R}_p\): application to morphological processing of hyperspectral images. IEEE Trans. Image Process. 20(11), 3301 (2011)

    Article  MathSciNet  Google Scholar 

  28. Velasco-Forero, S., Angulo, J.: Random projection depth for multivariate mathematical morphology. IEEE J. Sel. Top. Signal Process. 6(7), 753–763 (2012)

    Article  Google Scholar 

  29. Vincent, L.: Morphological grayscale reconstruction in image analysis: applications and efficient algorithms. IEEE Trans. Image Process. 2(2), 176–201 (1993)

    Article  Google Scholar 

  30. Vincent, L.: Morphological area openings and closings for grey-scale images. In: O, Y.L., Toet, A., Foster, D., Heijmans, H.J.A.M., Meer, P. (eds.) Shape in Picture. NATO ASI Series (Series F: Computer and Systems Sciences), vol. 126. Springer, Cham (1994). https://doi.org/10.1007/978-3-662-03039-4_13

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edwin Carlinet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carlinet, E., Géraud, T. (2019). Introducing Multivariate Connected Openings and Closings. In: Burgeth, B., Kleefeld, A., Naegel, B., Passat, N., Perret, B. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2019. Lecture Notes in Computer Science(), vol 11564. Springer, Cham. https://doi.org/10.1007/978-3-030-20867-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20867-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20866-0

  • Online ISBN: 978-3-030-20867-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics