Skip to main content

Modelling Parametric Instabilities at Advanced LIGO and ET

  • Chapter
  • First Online:
  • 562 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

Parametric instabilities in Fabry-Perot cavities were first introduced in 2001 as a potential pitfall and serious problem for laser interferometer gravitational-wave detectors [1, 2]. Parametric instabilities emerge from the optomechanical interaction between the high power optical field resonating in the cavity and the cavity mirrors which act as test masses. In Advanced LIGO each test mass is a \(\sim \)40 kg fused silica cylinder, and at design levels they are subject to \(\sim \)800 kW of optical power. Under some conditions the optical field will yield energy to the test mass in a way that excites a particular mechanical resonance. If the amplitude of such excitation grows exponentially in time, it is referred to as an oscillatory parametric instability (PI). These perturbations are of purely dynamical nonlinear origin. If not addressed, they can saturate the interferometer control systems and displace the instrument away from a suitable operating point.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Braginsky VB, Strigin SE, Vyatchanin SP (2001) Parametric oscillatory instability in Fabry–Perot interferometer. Phys Lett A 287:331–338

    Article  ADS  Google Scholar 

  2. Braginsky VB, Strigin SE, Vyatchanin SP (2002) Analysis of parametric oscillatory instability in power recycled LIGO interferometer, 111–124. arXiv: gr-qc/0209064v1

  3. Evans M, Barsotti L, Fritschel P (2010) A general approach to optomechanical parametric instabilities. Phys Lett A374:665–671

    Article  ADS  Google Scholar 

  4. Green A (2018) When light gets pushy: radiation pressure effects in interferometric gravitational wave detectors. PhD thesis, University of Birmingham

    Google Scholar 

  5. EvansM, Gras S, Fritschel P, Miller J, Review LBP (2015) Observation of parametric instability in Advanced LIGO. APS

    Google Scholar 

  6. Ju L, Zhao C, Gras S, Degallaix J, Blair DG , Munch J, Reitze DH (2006) Comparison of parametric instabilities for different test mass materials in advanced gravitational wave interferometers. Phys Lett A 355:419–426

    Article  ADS  Google Scholar 

  7. Zhao C, Ju L, Degallaix J, Gras S, Blair DG (2005) Parametric instabilities and their control in advanced interferometer gravitational-wave detectors. Phys Rev Lett 94:325–4

    Google Scholar 

  8. Brown DD, Green A, Dovale Álvarez M, Optical suppression of parametric instabilities with extraction cavities. In preparation

    Google Scholar 

  9. Strigin SE, Vyatchanin SP (2010) Analysis of parametric oscillatory instability in Fabry–Perot cavity with Gauss and Laguerre–Gauss main mode profile. Phys. Lett. A 374:1101–1104

    Article  ADS  Google Scholar 

  10. Gras S, Fritschel P, Barsotti L, Evans M (2015) Resonant dampers for parametric instabilities in gravitational wave detectors. Phys Rev D 92:082001–10

    Google Scholar 

  11. Gras S, Blair DG, Ju L (2008) Test mass ring dampers with minimum thermal noise. Phys Lett A 372:1348–1356

    Article  ADS  Google Scholar 

  12. Miller J, Evans M, Barsotti L, Fritschel P, MacInnis M, Mittleman R, Shapiro B, Soto J, Torrie C (2011) Damping parametric instabilities in future gravitational wave detectors by means of electrostatic actuators. Phys Lett A 375:788–794

    Article  ADS  Google Scholar 

  13. Wang H, Blair C, Álvarez MD, Brooks A, Kasprzack MF, Ramette J, Meyers PM, Kaufer S, OŔeilly B, Mow-Lowry CM, Freise A (2017) Thermal modelling of Advanced LIGO test masses. Classical Quantum Gravity 34(11):115001

    Article  ADS  Google Scholar 

  14. Strigin SE (2012) The effect of parametric oscillatory instability in a Fabry-Perot cavity of the Einstein telescope. Opt Spectrosc 112:373–376

    Article  ADS  Google Scholar 

  15. Strigin SE (2015) Suppression of parametric oscillatory instability in third generation gravitational wave detectors. Phys Lett A 379:1671–1674

    Article  ADS  Google Scholar 

  16. Abernathy M, Acernese F, Ajith P, Allen B, Amaro-Seoane P et al (2011) Einstein gravitational wave Telescope conceptual design study, available from European Gravitational Observatory, document number ET-0106C-10

    Google Scholar 

  17. Hutchinson JR (1980) Vibrations of solid cylinders. J Appl Mech 47:901–907

    Article  ADS  Google Scholar 

  18. Chree C (1886) Longitudinal vibrations of a circular bar. Q J Math 21(83/84):287–288

    MATH  Google Scholar 

  19. Lamb H (1917) On Waves in an Elastic Plate. Proc Royal Soc Lond 93:114–128

    Article  ADS  Google Scholar 

  20. COMSOL Multiphysics Reference Manual, version 5.3, COMSOL Inc. http://www.COMSOL.com/

  21. Brown DD (2015) Interactions of light and mirrors: advanced techniques for modelling future gravitational wave detectors. PhD thesis, University of Birmingham

    Google Scholar 

  22. Strigin SE, Blair DG, Gras S, Vyatchanin SP (2008) Numerical calculations of elastic modes frequencies for parametric oscillatory instability in Advanced LIGO interferometer. Phys Lett A 372:5727–5731

    Article  ADS  Google Scholar 

  23. Meleshko VV, Strigin SE, Yakymenko MS (2009) Parametric oscillatory instability on axially-symmetrical test mass elastic modes in Advanced LIGO interferometer. Phys Lett A 373:3701–3704

    Article  ADS  Google Scholar 

  24. Dovale Álvarez M, Brown D, Freise A (2017) Exporting surface displacement data from COMSOL multiphysics. LIGO Document T1700268

    Google Scholar 

  25. Brown DD, Freise A (2004) Finesse, May, 2014. You can download the binaries and source code at http://www.gwoptics.org/finesse

  26. Hopcroft MA, Nix WD, Kenny TW (2010) What is the Young’s Modulus of Silicon? J Microelectromech Syst 19:229–238

    Article  Google Scholar 

  27. Adhikari RX, Smith N, Brooks A, Barsotti L, Shapiro B, Lantz B, McClelland D, Gustafson EK, Martynov DV, Mitrofanov V, Coyne D, Arai K, Torrie C, Wipf C (2017) LIGO voyager upgrade: Design concept. LIGO Document T1400226-v9

    Google Scholar 

  28. Read JS, Markakis C, Shibata M, Uryū K, Creighton JDE, Friedman JL (2009) Measuring the neutron star equation of state with gravitational wave observations. Phys Rev D 79:124032–12

    Google Scholar 

  29. Green AC, Brown DD, Dovale Álvarez M, Collins C, Miao H, Mow-Lowry CM, Freise A (2017) The influence of dual-recycling on parametric instabilities at Advanced LIGO. Classical Quantum Gravity 34:205004–17

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Dovale Álvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, M.D. (2019). Modelling Parametric Instabilities at Advanced LIGO and ET. In: Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-20863-9_10

Download citation

Publish with us

Policies and ethics