Advertisement

Results

  • Peter KúšEmail author
Chapter
  • 177 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The main part of this thesis is divided into several thematic sections. Firstly, the setting up of our PEM-WE testing cell is described (Sect. 3.1) and the way of catalyst loading determination is explained (Sect. 3.2).

References

  1. 1.
    Hwang C, Ito H, Maeda T, Nakano A, Kato A, Yoshida T (2013) Flow field design for a polymer electrolyte unitized reversible fuel cell. ECS Trans 50:787–794.  https://doi.org/10.1149/05002.0787ecstCrossRefGoogle Scholar
  2. 2.
    Zhang D, Duan L, Guo L, Wang Z, Zhao J, Tuan WH, Niihara K (2011) TiN-coated titanium as the bipolar plate for PEMFC by multi-arc ion plating. Int J Hydrogen Energy 36:9155–9161.  https://doi.org/10.1016/j.ijhydene.2011.04.123CrossRefGoogle Scholar
  3. 3.
    Langemann M, Fritz DL, Muller M, Stolten D (2015) Validation and characterization of suitable materials for bipolar plates in PEM water electrolysis. Int J Hydrogen Energy 40:11385–11391.  https://doi.org/10.1016/j.ijhydene.2015.04.155CrossRefGoogle Scholar
  4. 4.
    Carmo M, Fritz DL, Mergel J, Stolten D (2013) A comprehensive review on PEM water electrolysis. Int J Hydrogen Energy 38:4901–4934.  https://doi.org/10.1016/j.ijhydene.2013.01.151CrossRefGoogle Scholar
  5. 5.
    DOE Technical Targets for Hydrogen Production from Electrolysis. Energy Gov https://energy.gov/eere/fuelcells/doe-technical-targets-hydrogen-production-electrolysis (accessed 15 Nov 2017)
  6. 6.
    Ito H, Maeda T, Nakano A, Takenaka H (2011) Properties of Nafion membranes under PEM water electrolysis conditions. Int J Hydrogen Energy 36:10527–10540.  https://doi.org/10.1016/j.ijhydene.2011.05.127CrossRefGoogle Scholar
  7. 7.
    Slavcheva E, Radev I, Bliznakov S, Topalov G, Andreev P, Budevski E (2007) Sputtered iridium oxide films as electrocatalysts for water splitting via PEM electrolysis. Electrochim Acta 52:3889–3894.  https://doi.org/10.1016/j.electacta.2006.11.005CrossRefGoogle Scholar
  8. 8.
    Sapountzi FM, Divane SC, Papaioannou EI, Souentie S, Vayenas CG (2011) The role of Nafion content in sputtered IrO2 based anodes for low temperature PEM water electrolysis. J Electroanal Chem 662:116–122.  https://doi.org/10.1016/j.jelechem.2011.04.005CrossRefGoogle Scholar
  9. 9.
    Ma L, Sui S, Zhai Y (2008) Preparation and characterization of Ir/TiC catalyst for oxygen evolution. J Power Sources 177:470–477.  https://doi.org/10.1016/j.jpowsour.2007.11.106CrossRefGoogle Scholar
  10. 10.
    Sui S, Ma L, Zhai Y (2011) TiC supported Pt–Ir electrocatalyst prepared by a plasma process for the oxygen electrode in unitized regenerative fuel cells. J Power Sources 196:5416–5422.  https://doi.org/10.1016/j.jpowsour.2011.02.058CrossRefGoogle Scholar
  11. 11.
    Ma L, Sui S, Zhai Y (2009) Investigations on high performance proton exchange membrane water electrolyzer. Int J Hydrogen Energy 34:678–684.  https://doi.org/10.1016/j.ijhydene.2008.11.022CrossRefGoogle Scholar
  12. 12.
    Huang J, Li Z, Zhang J (2017) Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front Energy 11:334–364.  https://doi.org/10.1007/s11708-017-0490-6CrossRefGoogle Scholar
  13. 13.
    Vielstich W, Lamm A, Gasteiger HA, Yokokawa H (2003) Handbook of fuel cells: fundamentals, technology, and applications. WileyGoogle Scholar
  14. 14.
    Kúš P, Ostroverkh A, Ševčíková K, Khalakhan I, Fiala R, Skála T, Tsud N, Matolin V (2016) Magnetron sputtered Ir thin film on TiC-based support sublayer as low-loading anode catalyst for proton exchange membrane water electrolysis. Int J Hydrogen Energy 41:15124–15132.  https://doi.org/10.1016/j.ijhydene.2016.06.248CrossRefGoogle Scholar
  15. 15.
    van der Merwe J, Uren K, van Schoor G, Bessarabov D (2014) Characterisation tools development for PEM electrolysers. Int J Hydrogen Energy 39:14212–14221.  https://doi.org/10.1016/j.ijhydene.2014.02.096CrossRefGoogle Scholar
  16. 16.
    Hoffman DW (1990) Intrinsic resputtering—theory and experiment. J Vac Sci Technol A Vac Surf Film 8.  https://doi.org/10.1116/1.576483ADSCrossRefGoogle Scholar
  17. 17.
    Smith GC, Hopwood AB, Titchener KJ (2002) Electron inelastic mean free path for Ti, TiC, TiN and TiO2 as determined by quantitative reflection electron energy-loss spectroscopy. Surf Interface Anal 33:230–237.  https://doi.org/10.1002/sia.1205CrossRefGoogle Scholar
  18. 18.
    Lu G, Bernasek SL, Schwartz J (2000) Oxidation of a polycrystalline titanium surface by oxygen and water. Surf Sci 458:80–90.  https://doi.org/10.1016/S0039-6028(00)00420-9ADSCrossRefGoogle Scholar
  19. 19.
    Ottakam Thotiyl MM, Freunberger SA, Peng Z, Chen Y, Liu Z, Bruce PG (2013) A stable cathode for the aprotic Li–O2 battery. Nat Mater 12:1050–1056.  https://doi.org/10.1038/nmat3737ADSCrossRefGoogle Scholar
  20. 20.
    Albert A, Barnett AO, Thomassen MS, Schmidt TJ, Gubler L (2015) Radiation-grafted polymer electrolyte membranes for water electrolysis cells: evaluation of key membrane properties. ACS Appl Mater Interfaces 7:22203–22212.  https://doi.org/10.1021/acsami.5b04618CrossRefGoogle Scholar
  21. 21.
    Kúš P, Ostroverkh A, Khalakhan I, Fiala R, Kosto Y, Šmíd B, Lobko E, Yakovlev Y, Nováková J, Matolínova I, Matolín V (2019) Magnetron sputtered thin-film vertically segmented Pt–Ir catalyst supported on TiC for anode side of proton exchange membrane unitized regenerative fuel cells. Manuscript submitted to Int J Hydrogen EnergyGoogle Scholar
  22. 22.
    Ostroverkh A, Johánek V, Dubau M, Kúš P, Khalakhan I, Šmíd B, Fiala R, Václavů M, Ostroverkh Y, Matolín V (2019) Optimization of ionomer-free ultra-low loading Pt catalyst for anode/cathode of PEMFC via magnetron sputtering. Int J Hydrogen Energy.  https://doi.org/10.1016/j.ijhydene.2018.12.206
  23. 23.
    Radev I, Topalov G, Lefterova E, Ganske G, Schnakenberg U, Tsotridis G, Slavcheva E (2012) Optimization of platinum/iridium ratio in thin sputtered films for PEMFC cathodes. Int J Hydrogen Energy 37:7730–7735.  https://doi.org/10.1016/j.ijhydene.2012.02.015CrossRefGoogle Scholar
  24. 24.
    Wang J, Holt-Hindle P, MacDonald D, Thomas DF, Chen A (2008) Synthesis and electrochemical study of Pt-based nanoporous materials. Electrochim Acta 53:6944–6952.  https://doi.org/10.1016/j.electacta.2008.02.028CrossRefGoogle Scholar
  25. 25.
    Fiala R (2017) Investigation of new catalysts for polymer membrane fuel cells. Dissertation Thesis, Charles UniversityGoogle Scholar
  26. 26.
    Khalakhan I, Choukourov A, Vorokhta M, Kúš P, Matolínová I, Matolín V (2018) In situ electrochemical AFM monitoring of the potential-dependent deterioration of platinum catalyst during potentiodynamic cycling. Ultramicroscopy 187:64–70.  https://doi.org/10.1016/j.ultramic.2018.01.015CrossRefGoogle Scholar
  27. 27.
    Topalov AA, Katsounaros I, Auinger M, Cherevko S, Meier JC, Klemm SO, Mayrhofer KJJ (2012) Dissolution of platinum: limits for the deployment of electrochemical energy conversion? Angew Chemie—Int Ed 51:12613–12615.  https://doi.org/10.1002/anie.201207256CrossRefGoogle Scholar
  28. 28.
    Sugawara Y, Okayasu T, Yadav AP, Nishikata A, Tsuru T (2012) Dissolution mechanism of platinum in sulfuric acid solution. J Electrochem Soc 159:779–786.  https://doi.org/10.1149/2.017212jesCrossRefGoogle Scholar
  29. 29.
    El Sawy EN, Birss VI (2009) Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition. J Mater Chem 19:8244.  https://doi.org/10.1039/b914662hCrossRefGoogle Scholar
  30. 30.
    Cherevko S, Geiger S, Kasian O, Mingers A, Mayrhofer KJJ (2016) Oxygen evolution activity and stability of iridium in acidic media. Part 1—Metallic iridium. J Electroanal Chem 773:69–78.  https://doi.org/10.1016/j.jelechem.2016.04.033CrossRefGoogle Scholar
  31. 31.
    Cherevko S, Geiger S, Kasian O, Mingers A, Mayrhofer KJJ (2016) Oxygen evolution activity and stability of iridium in acidic media. Part 2—Electrochemically grown hydrous iridium oxide. J Electroanal Chem 774:102–110.  https://doi.org/10.1016/j.jelechem.2016.05.015CrossRefGoogle Scholar
  32. 32.
    Lee I, Whang C, Lee Y, Hwan G, Park B, Park J, Seo W, Cui F (2005) Formation of nano iridium oxide: material properties and neural cell culture. Thin Solid Films 475:332–336.  https://doi.org/10.1016/j.tsf.2004.08.076ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Surface and Plasma Science, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations