Skip to main content

Out-of-Time-Ordered Correlators

  • Chapter
  • First Online:
  • 405 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this chapter we study the out-of-time-ordered correlators (OTOCs) for the gauge field in our model. While originally introduced in the context of quasiclassical approaches to quantum systems (Larkin and Ovchinnikov in Sov Phys JETP 28:1200–1205, 1969, [1]), OTOCs have recently received renewed interest due to their connections with the emergence of quantum chaotic behaviour [2,3,4].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that the constants \(c,v,\xi \) for the operator and correlator bounds are not generally the same.

References

  1. Larkin AI, Ovchinnikov YN (1969) Quasiclassical method in the theory of superconductivity. Sov Phys JETP 28:1200–1205

    ADS  Google Scholar 

  2. Berry M (1989) Quantum chaology, not quantum chaos. Phys Scr 40:335–336. https://doi.org/10.1088/0031-8949/40/3/013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Maldacena J, Shenker SH, Stanford D (2016) A bound on chaos. J High Energy Phys 2016:106. https://doi.org/10.1007/JHEP08(2016)106

    Article  MathSciNet  MATH  Google Scholar 

  4. Bohrdt A, Mendl CB, Endres M, Knap M (2017) Scrambling and thermalization in a diffusive quantum many-body system. New J Phys 19:063001. https://doi.org/10.1088/1367-2630/aa719b

    Article  Google Scholar 

  5. Lin C-J, Motrunich OI (2018) Out-of-time-ordered correlators in a quantum Ising chain. Phys Rev B 97:144304. https://doi.org/10.1103/PhysRevB.97.144304

    Article  ADS  Google Scholar 

  6. Dóra B, Moessner R (2017) Out-of-time-ordered density correlators in luttinger liquids. Phys Rev Lett 119:026802. https://doi.org/10.1103/PhysRevLett.119.026802

    Article  ADS  Google Scholar 

  7. McGinley M, Nunnenkamp A, Knolle J (2018) Slow growth of entanglement and out-of-time-order correlators in integrable disordered systems, 1–10. arXiv:1807.06039

  8. Chen X, Zhou T, Huse DA, Fradkin E (2017) Out-of-time-order correlations in many-body localized and thermal phases. Ann Phys 529:1600332. https://doi.org/10.1002/andp.201600332

    Article  MathSciNet  Google Scholar 

  9. Huang Y, Zhang YL, Chen X (2017) Out-of-time-ordered correlators in many-body localized systems. Ann Phys 529:1–6. https://doi.org/10.1002/andp.201600318

    Article  Google Scholar 

  10. Fan R, Zhang P, Shen H, Zhai H (2017) Out-of-time-order correlation for many-body localization. Sci Bull 62:707–711. https://doi.org/10.1016/j.scib.2017.04.011

    Article  Google Scholar 

  11. Nahum A, Vijay S, Haah J (2018) Operator Spreading in Random Unitary Circuits. Phys Rev X 8:021014. https://doi.org/10.1103/PhysRevX.8.021014

    Article  Google Scholar 

  12. von Keyserlingk CW, Rakovszky T, Pollmann F, Sondhi SL (2018) Operator hydrodynamics, OTOCs, and entanglement growth in systems without conservation laws. Phys Rev X 8:021013. https://doi.org/10.1103/PhysRevX.8.021013

    Article  Google Scholar 

  13. Rakovszky T, Pollmann F, von Keyserlingk CW (2017) Diffusive hydrodynamics of out-of-time-ordered correlators with charge conservation. arXiv:1710.09827

  14. Zhou T, Nahum A (2018) Emergent statistical mechanics of entanglement in random unitary circuits. arXiv:1804.09737

  15. Kitaev AY (2015) KITP talk: a simple model of quantum holography. http://online.kitp.ucsb.edu/online/entangled15/kitaev/

  16. Maldacena J, Stanford D (2016) Remarks on the Sachdev-Ye-Kitaev model. Phys Rev D 94:106002. https://doi.org/10.1103/PhysRevD.94.106002

    Article  ADS  MathSciNet  Google Scholar 

  17. Aleiner IL, Faoro L, Ioffe LB (2016) Microscopic model of quantum butterfly effect: out-of-time-order correlators and traveling combustion waves. Ann Phys (NY) 375:378–406. https://doi.org/10.1016/j.aop.2016.09.006

    Article  ADS  MathSciNet  Google Scholar 

  18. Khemani V, Huse DA, Nahum A (2018) Velocity-dependent Lyapunov exponents in many-body quantum, semi-classical, and classical chaos. arXiv:1803.05902

  19. Shenker SH, Stanford D (2014) Black holes and the butterfly effect. J High Energy Phys 2014:67. https://doi.org/10.1007/JHEP03(2014)067

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieb EH, Robinson DW (1972) The finite group velocity of quantum spin systems. Commun Math Phys 28:251–257. https://doi.org/10.1007/BF01645779

    Article  ADS  MathSciNet  Google Scholar 

  21. Schneider U, Hackermuller L, Will S, Best T, Bloch I, Costi TA, Helmes RW, Rasch D, Rosch A (2008) Metallic and insulating phases of repulsively interacting fermions in a 3D Optical lattice. Science 322:1520–1525. https://doi.org/10.1126/science.1165449

    Article  ADS  Google Scholar 

  22. Hackermuller L, Schneider U, Moreno-Cardoner M, Kitagawa T, Best T, Will S, Demler E, Altman E, Bloch I, Paredes B (2010) Anomalous expansion of attractively interacting fermionic atoms in an optical lattice. Science 327:1621–1624. https://doi.org/10.1126/science.1184565, arXiv:0912.3592

    Article  ADS  Google Scholar 

  23. Braun S, Schneider U, Rasch D, Mandt S, Hackermüller L, Best T, Rosch A, Ronzheimer JP, Bloch I, Will S, Demler E (2012) Fermionic transport and out-of-equilibrium dynamics in a homogeneous Hubbard model with ultracold atoms. Nat Phys. https://doi.org/10.1038/nphys2205

    Article  ADS  Google Scholar 

  24. Vardhan S, De Tomasi G, Heyl M, Heller EJ, Pollmann F (2017) Characterizing time irreversibility in disordered fermionic systems by the effect of local perturbations. Phys Rev Lett 119:016802. https://doi.org/10.1103/PhysRevLett.119.016802

    Article  ADS  Google Scholar 

  25. Landau LD, Lifshitz EM (1977) Quantum mechanics: non-relativistic theory, 3rd edn. Pergamon Press

    Google Scholar 

  26. Serbyn M, Abanin DA (2017) Loschmidt echo in many-body localized phases. Phys Rev B 96:1–10. https://doi.org/10.1103/PhysRevB.96.014202, arXiv:1701.07772

  27. Lee J, Kim D, Kim DH (2018) Typical growth behavior of the out-of-time-ordered commutator in many-body localized systems. arXiv:1812.00357

  28. Hetterich D, Serbyn M, Domínguez F, Pollmann F, Trauzettel B (2017) Noninteracting central site model: localization and logarithmic entanglement growth. Phys Rev B 96:104203. https://doi.org/10.1103/PhysRevB.96.104203, arXiv:1701.02744v2

  29. Yao NY, Grusdt F, Swingle B, Lukin MD, Stamper-Kurn DM, Moore JE, Demler EA (2016b) Interferometric approach to probing fast scrambling. arXiv:1607.01801

  30. Garttner M, Bohnet JG, Safavi-Naini A, Wall ML, Bollinger JJ, Rey AM (2017) Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat Phys 13:781–786. https://doi.org/10.1038/NPHYS4119

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Smith .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Smith, A. (2019). Out-of-Time-Ordered Correlators. In: Disorder-Free Localization. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-20851-6_5

Download citation

Publish with us

Policies and ethics